• Run by Sussex Partnership NHS Foundation Trust, in partnership with the University of Sussex and Oxford Health NHS Foundation Trust.
  • Not routinely or accurately predicting length of stay on acute mental health wards makes bed management challenging, but these predictions are complex to calculate.
  • This project will involve the development of an algorithm using machine learning to predict length of stay within three days of a patient’s admission.

Bed occupancy in acute mental health NHS facilities is often close to or above 100%. This results in patients being admitted far from their homes and being separated from family and carers. It impacts patient experience, quality and safety, and it is challenging to admit patients who are in a crisis.

Length of stay (LoS) is an important driver of these occupancy levels, with patient stays over two months contributing disproportionately. However, most trusts do not routinely or accurately predict LoS.  

Predicting LoS is challenging, as multiple factors need to be taken into account, including primary diagnosis; physical health and/or substance misuse co-morbidity; housing, relationship and employment status; functional and social impairment; multiple ward changes; and the cultural milieu of a ward.

In partnership with the University of Sussex, this Advancing Applied Analytics project team will develop an algorithm using machine learning to predict LoS within three days of admission to an adult ward. The model will be piloted in Sussex and then tested at Oxford Health NHS Foundation Trust.

Routinely and accurately predicting LoS will provide patients with better quality of care, shaping their journey to make every day count and giving tangible hope at a time when they are acutely unwell. It will also free up clinicians to focus on shared decision making with the patient and carer, and support operational staff in bed management.

The algorithm will use data collected as part of the Mental Health Service Data Set, meaning it could be used by other NHS mental health trusts.


For further information about this project, please contact Rachael Duke, Head of Charity, Sussex Partnership NHS Foundation Trust.

About this programme


Advancing Applied Analytics


This programme offers £750,000 of funding to support up to 12 project teams aiming to improve...

You might also like...


Data-driven tools in health and care


Ellen Coughlan reflects on a recent workshop, exploring key questions about how to develop...


Context matters: what’s needed for young people’s mental health?


Martina Kane reflects on varied Health Foundation work to better understand and support young...


Working as a GP through the pandemic: using online tools as part of a hybrid model of care to meet the needs of patients and staff


Dr Minal Bakhai reflects on how the recent IAU study of patients at general practices using digital...

Kjell-bubble-diagramArtboard 101 copy

Get social

How will falling levels of public satisfaction with the NHS affect debate about NHS reform? Our Director of Poli… https://t.co/X5X7zF0rfX

Follow us on Twitter
Kjell-bubble-diagramArtboard 101

Work with us

We look for talented and passionate individuals as everyone at the Health Foundation has an important role to play.

View current vacancies
Artboard 101 copy 2

The Q community

Q is an initiative connecting people with improvement expertise across the UK.

Find out more