The IMPACT ${ }_{\text {NcD }}$ technical appendix

Anna Head, Toby Watt, Ann Raymond, Laurie Rachet-Jacquet, Max Birkett, Chris Kypridemos

This technical appendix has been updated to include additional data and modelling assumptions used in Health inequalities in 2040: current and projected patterns of illness by deprivation in England

1. Introduction 1
2. Epidemiological engine 3
High-level description 3
Sociodemographic module 7
Exposure module 8
Clustering of risk factors 10
Disease module 11
Disease incidence 11
Estimating the observed incidence probability IObserved 16
Initial prevalence 16
Conditions with recovery and recurrence: asthma, anxiety and depression, constipation, pain, alcohol problems and cancers 16
Dependencies between conditions 16
Disease duration 18
Mortality 19
Mortality calibration 19
3. Population-attributable risk fraction (PARF) 20
PARF calculations 20
4. Model outputs 21
Uncertainty and probabilistic sensitivity analysis 22
5. Validation and calibration 23
6. Definition of the Cambridge Multimorbidity Score and defining conditions in primary care data. 24
7. Strengths and limitations of this modelling approach 30
8. References 31
A) Supplementary materials A: Disease module details 37
Model structure 37
Coronary Heart Disease (CHD) 39
Validation plots for CHD incidence, case fatality, and prevalence 45
Stroke (including transient ischaemic attack (TIA)) 46
Validation plots for stroke incidence, case fatality, and prevalence 51
Breast cancer 52
Validation plots for breast cancer incidence, case fatality, and prevalence 56
Colorectal cancer 57
Validation plots for colorectal cancer incidence, case fatality, and prevalence 60
Lung cancer 61
Validation plots for lung cancer incidence, case fatality, and prevalence 65
Prostate cancer 66
Validation plots for prostate cancer incidence, case fatality, and prevalence 69
Other cancers 70
Validation plots for other cancer incidence, case fatality, and prevalence 72
Chronic obstructive pulmonary disease (COPD) 73
Validation plots for COPD incidence, case fatality, and prevalence 76
Atrial fibrillation 77
Validation plots for atrial fibrillation incidence, case fatality, and prevalence 80
Heart Failure 81
Validation plots for heart failure incidence, case fatality, and prevalence 83
Type 2 diabetes mellitus 84
Validation plots for type 2 diabetes mellitus incidence, case fatality, and prevalence 88
Chronic kidney disease (CKD) 89
Validation plots for chronic kidney disease incidence and prevalence 92
Dementia 93
Validation plots for dementia incidence, case fatality, and prevalence 96
Hypertension 97
Validation plots for hypertension incidence and prevalence 100
Asthma 101
Validation plots for asthma incidence and prevalence 104
Alcohol problems 105
Validation plots for alcohol problems incidence and prevalence 107
Anxiety and depression 108
Validation plots for anxiety and depression incidence and prevalence 110
Constipation 111
Validation plots for constipation incidence and prevalence 113
Pain 114
Validation plots for pain incidence and prevalence 116
Psychosis 117
Validation plots for psychosis incidence and prevalence 119
Epilepsy 120
Validation plots for epilepsy incidence, case fatality, and prevalence 122
Rheumatoid arthritis 123
Validation plots for rheumatoid arthritis incidence, case fatality, and prevalence 124
Connective tissue disorders 125
Validation plots for connective tissue disorders incidence, case fatality, and prevalence 126
Type 1 Diabetes Mellitus 127
Validation plots for type 1 diabetes mellitus incidence, case fatality, and prevalence 128
Hearing loss 129
Validation plots for hearing loss incidence and prevalence 130
Irritable bowel syndrome (IBS) 131
Validation plots for IBS incidence and prevalence 132
Non-modelled mortality 133
Cambridge Multimorbidity Score (CMS) Validation 137
B) Supplementary materials B: exposure modelling details and validation 138
Exposure modelling details 138
Exposure validation plots 142
Active days 143
Alcohol intake 146
Body mass index 149
Systolic blood pressure 152
Total cholesterol. 155
Fruit intake 158
Vegetable intake 160
Fruit and Vegetable intake combined 162
Statin prescriptions 163
Number of cigarettes smoked (ex-smokers) 165
Number of cigarettes smoked (current smokers) 167
Smoking status 169
Years of smoking (ex-smokers) 172
Years of smoking (current smokers) 174
Years since smoking cessation 176
Exposure to environmental smoking 178

1. Introduction

IMPACT ${ }_{\text {NCD }}$ is an open-source microsimulation modelling framework for public health policy planning and decision making in non-communicable disease (NCD) prevention. The epidemiological engine of the modelling framework translates changes in the trends of disease risk factors into changes in disease incidence and case fatality and subsequent disease prevalence. The policy layer of the framework complements the epidemiological engine and translates policy changes (hypothetical or real) into changes in the trends of disease risk factors.

IMPACT $_{\text {NCD }}$ has been used extensively to model primary prevention policies nationally in England, Brazil, and the US, and locally in Liverpool. [1-10] A simplified diagram of the model structure is presented in Figure 1-1. At the core of the model is an epidemiological engine which includes age, sex, area deprivation (English Index of Multiple Deprivation (IMD)), smoking, environmental tobacco smoke exposure, alcohol consumption, fruit and vegetable consumption, physical activity, body mass index (BMI), systolic blood pressure (SBP), and total serum cholesterol, as risk factors. The diseases modelled from risk factor trends include coronary heart disease (CHD), stroke, hypertension, type 2 diabetes mellitus (T2DM), lung cancer, colorectal cancer, breast cancer, prostate cancer, chronic kidney disease (CKD), dementia, atrial fibrillation (AF), asthma, and chronic obstructive pulmonary disease (COPD), plus thirteen additional conditions that are modelled from past trends in disease incidence and mortality. Notably, diseases can be risk factors for other diseases (i.e. type 2 diabetes mellitus is a risk factor for coronary heart disease). The policy layer is dedicated to modelling either a specific public health policy formulation or a hypothetical scenario and consists of a mathematical/statistical model of the policy.

This iteration of IMPACT ${ }_{\text {NCD }}$ uses data from the Health Survey for England (HSE) to inform trends in risk factors and linked primary care records (Clinical Practice Research Datalink (CPRD) Aurum linked to Hospital Episode Statistics (HES) inpatient, HES outpatient, and Office for National Statistics (ONS) mortality records; described in the Disease module section) to inform trends in disease incidence, prevalence, and disease-specific mortality. ONS population estimates and projections are used to inform estimates of the population size and structure and to calibrate mortality.

The IMPACT ${ }_{\text {NCD }}$ framework is modular and can grow in several directions, with contributions from us and others. For example, it allows third parties to develop policy layers independently and hook them to the epidemiological engine. The open-source licence (GPLv3) ensures transparency and accountability while promoting collaborative work throughout development and deployment. The source code of the current implementation is available at https://github.com/ChristK/IMPACTncd Engl/tree/Report 1. In addition, the code used to convert the linked CPRD-HES-ONS patient sample into a patient-level longitudinal dataset identifying times of onset (incidence), prevalence, remission or mortality for a list of common conditions in the population of England is available at GitHub HFAnalyticsLab/Patterns of diagnosed illness for England using CPRD HES ONS data

2. Epidemiological engine

High-level description

The epidemiological engine of IMPACT $_{\text {NCD }}$ is a discrete-time, dynamic, stochastic microsimulation consisting of three modules: the Sociodemographic module, the Exposure module, and the Disease module.

Within the IMPACT ${ }_{\text {NCD }}$ epidemiological engine, each unit is a synthetic individual (simulant) represented by a record containing a unique identifier and a set of associated attributes. The microsimulation then projects the life course of each synthetic individual.

The attributes of each synthetic individual include sociodemographic characteristics, exposures to risk factors, acquired diseases, and cause of death if relevant.

Specific attributes include:

1. Age, sex, ethnicity, region, and index of multiple deprivation deciles as sociodemographic exposures.
2. Alcohol intake, smoking status (current smoker/ ex-smoker/ never-smoker), smoking duration, smoking intensity, environmental tobacco exposure, fruit consumption, vegetable consumption, and physical activity as behavioural risk exposure variables.
3. Body mass index, systolic blood pressure, and total serum cholesterol as biological risk exposures.
4. The risk for thirteen diseases is modelled explicitly: asthma, atrial fibrillation, chronic kidney disease, chronic obstructive pulmonary disease, coronary heart disease, hypertension, dementia, stroke, type 2 diabetes mellitus, breast cancer, colorectal cancer, lung cancer, and prostate cancer. The risk for these conditions is modelled from relevant exposures to sociodemographic, behavioural, and biological risk factor
attributes, as well as certain prevalent conditions. For instance, the risk of heart failure depends on age, sex, ethnicity, region, IMD, and prevalent CHD, COPD, T2DM and hypertension. Finally, the risk for a further 13 conditions - alcohol misuse, anxiety and depression, connective tissue disorders, constipation, epilepsy, hearing loss, heart failure, irritable bowel syndrome (IBS), other cancers, pain, psychosis and bipolar disorders, rheumatoid arthritis, and type 1 diabetes - is directly driven by past trends in disease incidence and sociodemographic exposures. Some of these conditions are combined in post hoc analyses to derive the 20 conditions for the Cambridge Multimorbidity Score (CMS). [11] The Disease module section summarises the modelling approach, and Supplementary materials A: Disease module details gives more detail on the modelling and data sources for each condition. Based on their risk of developing any of these conditions, simulants may develop some conditions during their life course.
5. Mortality from the diseases listed in 4 or any other cause is recorded if it occurs.

All these attributes are updated in discrete annual steps according to a set of stochastic rules. We structured these rules based on well-established epidemiological principles. Specifically, behavioural risk exposures are conditional on sociodemographic exposures; biological risk exposures are conditional on behavioural and sociodemographic exposures, and diseases are conditional on biological, behavioural, and sociodemographic exposures, as well as diagnosis of other conditions. Finally, mortality is conditional based on sociodemographic, behavioural, biological, and disease exposures.

The life course of synthetic individuals is simulated as many times as the number of scenarios to be modelled (one for this report), using the same random numbers for all policy scenarios to reduce stochastic noise. One of the scenarios is always the 'baseline' scenario with which all remaining policy scenarios are compared. In this report, the baseline scenario is that of continuing trends in risk factors. Comparing the disease outcomes from the life courses under the baseline scenario versus the policy scenarios generates the health impact of the policy scenarios. The output of the epidemiological engine is a dataset containing the adult life course of the simulated synthetic individuals, with all the attributes mentioned above recorded annually for every scenario. From this dataset of life course trajectories, summary measures such as average CMS, mortality, disease incidence and prevalence can be calculated annually.

As we mentioned above, the epidemiological engine of IMPACT ${ }_{\text {NCD }}$ consists of three modules: the sociodemographic module, the exposure module, and the disease module. In the
following paragraphs, we will describe these three modules. Table 2-1 summarises the key assumptions and limitations of the IMPACT ${ }_{N C D}$ microsimulation model.

Table 2-1 IMPACT ${ }_{\text {ncd }}$ key assumptions and limitations

Model component	Key assumptions
Sociodemographic module	Migration is not simulated explicitly in the model. However, the model outputs are scaled to ONS population projections. Therefore, the impact of net migration on population counts is reflected in the model outputs. Nevertheless, we assume that migrants have characteristics similar to those of the local population.
	Social mobility is not considered.
	Decile groups of the index of multiple deprivation (DIMD) is a relative marker of (area) deprivation with several versions since 2003. We have used the 2015 version and assume it is constant throughout the simulation.
Exposure module	We assume that the surveys used are truly representative of the population. For example, the adjustments for selection bias in the Health Survey for England are adequate.
	On average, simulants remain in the same exposure quantile throughout their life (see Exposure module section on p8).
	The linear correlations in exposure quantiles remain constant over time (i.e. the clustering of exposures in some subpopulations) (see Exposure module section on p8).
	We assume that trends in risk factor exposures continue and follow log-linear trends.
Disease module	We assume multiplicative risk effects (see Disease incidence section on p11).
	We assume log-linear exposure-response for the continuous risk factors.
	We assume that the effects of the risk factors on incidence and case fatality are equal (see Mortality on p19).
	We assume a mean lag time between exposure and outcome of about 4-5 years for most exposure/outcome pairs, except for cancers, for which we assume a mean lag time of 9 years (see Table 2-3 and Disease incidence section on p11).
	We assume 100% risk reversibility for all exposures except smoking. We allow smoking to have a cumulative effect on the risk for COPD and lung, breast, and colorectal cancers.
	We assume that trends in disease incidence are attributable only to trends of the relevant modelled risk factors or other diseases modelled.
	We assume that the linked primary care data used to model disease trends over time represents England's adult population.
	We assume that trends in disease incidence continue to follow log-linear trends (other than pain, see below).
	For cancers, we assume that survival ten years after diagnosis equals remission.

	For all conditions other than cancer (see point above), pain, constipation, asthma, alcohol problems, and anxiety and depression, we assume conditions are chronic.
For pain, we modelled the incidence of pain based on the incidence in 2013 due to data quality issues over time with the prescription data.	
For anxiety and depression and constipation, we did not calibrate to the observed trends in incidence rates because their projections led to implausible rates.	

Sociodemographic module

The first year of every simulation in IMPACT ${ }_{\text {NCD }}$ is 2013 , so we could use the overlapping period 2013-19 to calibrate and validate the model.

For each simulation, the algorithm in the module:

1. Identifies the Lower Super Output Areas (LSOAs) that constitute the user area selection; for this report, this was set to the whole of England.
2. Draws 200,000 synthetic individuals, aged 30 to 99 , from the joint age-sex distribution of the identified LSOAs. This is a default value that can be modified by the user. The joint age-sex distribution for each LSOA for 2013 is informed by the ONS population estimates. [12]
3. Assigns to each synthetic individual an IMD score and a Local Authority District (LAD) based on their LSOA.
4. Probabilistically assigns to each synthetic individual an ethnicity based on their age group, sex, and LSOA. The ethnicity mixture of each LSOA is informed by the 2011 Census. [13] We include nine ethnicities in the model (white, Indian, Pakistani, Bangladeshi, other Asian, Black Caribbean, Black African, Chinese, and others).
5. Assigns to each synthetic individual a Strategic Health Authority (SHA) based on their LSOA. SHA is the smallest geographical area accessible in the Health Survey for England series and is mostly aligned with English regions. We use this in the exposure module, as we describe in the next section.

So far, the algorithm has created a synthetic population that is a snapshot of the population of England in 2013. The following steps of the algorithm create backward and forward projections of the synthetic population that are essential to model exposure time trends and time lags between exposures and diseases.

The backward projection of the synthetic population goes back to 2003; therefore, the maximum time lag we allow in the model is ten years. As everyone alive and older than 30 years old in 2013 was alive in 2003, the algorithm simply creates the back projections by appropriately reducing the age of the synthetic individuals while keeping all other variables constant.

Similarly, for the forward projections, we project until 2043, and the algorithm increases the age of the synthetic individuals while keeping all other variables constant. For forward projections, mortality needs to be considered. We describe mortality with the disease module as disease-specific mortality is closely related to disease prevalence. IMPACT ${ }_{\text {NCD }}$ follows an open cohort approach. Every simulated year from 2013 onwards, a new cohort of 30-year-old synthetic individuals enters the model. The same sources inform the cohort size and the joint age-sex-ethnicity distribution we described above. For example, in 2014, the new 30-year-old cohort will be informed by the population size and the joint age-sex-ethnicity distribution of those who were 29 years old in 2013. We further scale our forward projections to the official ONS population projections, as we describe in the next paragraph.

Scaling to the latest ONS population projections [15] (2021-based interim) ensures that the projected national population counts in the model track those reported by the ONS, but this is not the case for sub-population counts by DIMD. Population growth is likely different by DIMD, but ONS does not release population projections stratified by DIMD. However, ONS released population projections by Local Authority District [14] (2018-based), which may indirectly capture the different growth rates by DIMD as LADs have different IMD distributions. Therefore, in IMPACT ${ }_{\text {NCD }}$, we first apply the ONS projected growth rates by LAD to the raw model outputs before scaling to the national population projections. Hence, we assume that the growth rate by DIMD within a LAD is the same.

Exposure module

This module simulates the adult life course exposures of synthetic individuals based on the HSE series between 2003 and 2014. [16-27] We followed the same general principles for all simulated exposures. First, we fit an appropriate statistical model to the HSE data with the exposure of interest as the dependent variable and some functions of the year, age, sex, quintiles of IMD (QIMD; deciles are not available in HSE), ethnicity, and SHA as independent variables. Then, we use the statistical model to predict the exposure level of every synthetic individual in the simulation based on their sociodemographic characteristics estimated from the sociodemographic module.

Including year as an independent variable in our exposure model allows us to extract the trends from the HSE series and project them into the future. Furthermore, it allows us to make backward projections of exposures when we simulate time lags. For example, for a synthetic female aged 30 in 2013, we can estimate her BMI in 2003, when she was 20 and in 2033 when she would be 50 . To avoid excessively fast changes in exposure trends and to reflect our belief that decays and growths in natural phenomena are rarely linear, we included the natural logarithm of years in the statistical models assuming logarithmic trends.

We used logit ordinal regression to model exposures that were recorded as ordinal categorical variables in HSE. We used generalised additive models for location, scale, and shape (GAMLSS) for all other exposures. [28,29] These are flexible statistical models that can make all parameters of an assumed distribution for the dependent variable conditional to some function of the independent variables. For example, GAMLSS can model the mean and the standard deviation of a normally distributed dependent variable conditional on the predictors, while a linear regression only models the mean. Table B-1 summarises our modelling approach for all the exposures in the model.

Figure 2-1 - Example of risk factor assignment for the synthetic population: Plot of the systolic blood pressure quantiles of a male synthetic individual living in QIMD 3 area for ages 40 and 60

The approach described above provides us with equations to estimate the distribution of the exposure to a risk factor for a given time and the sociodemographic characteristics of a synthetic individual. When the synthetic individual enters the simulation, a vector of random numbers between 0 and 1 and of size equal to the number of the modelled exposures is allocated to them. Each one of the numbers represents the quantile of the relevant exposure distribution. The principle is that synthetic individuals retain their quantiles throughout their life course (this is known as the rank stability assumption). [30] For example, in 2013, a 40-yearold male synthetic individual living in a QIMD 3 area with an SBP of 120 mmHg has a SBP quantile of 0.52 . Twenty years later, the same synthetic individual retained their quantile score for SBP. However, their SBP is now estimated to be 137.6 mmHg because the SBP distribution has changed to reflect the SBP of 60-year-old men living in a QIMD 3 area in 2033 (Figure 2-1). In IMPACT ${ }_{\text {NCD }}$, we allow the quantile of the synthetic individuals to fluctuate every year using random walks to relax the rank stability assumption. But on average the large majority of synthetic individuals will have minimal changes to their exposure quantile throughout their lives.

Clustering of risk factors

Finally, exposures in individuals are correlated. For example, people with a high BMI may also have high total cholesterol and hypertension. Some of these correlations reflect strong and well-established causal mechanisms, but the cross-sectional design of HSE may bias these correlations. The method we described above captures some of these correlations by including exposures as independent variables in the statistical models for estimating exposures. For example, we included BMI as a predictor for T2DM. Going a step further, we model the full correlation structure in HSE using the following approach:

1. We used the exposure models to impute missing variables in HSE.
2. We used the quantile function of the distribution estimated by the exposure models to convert exposures in HSE to quantiles. Because the distributions were conditional on the independent variables used in each model, the quantiles are adjusted for these variables (i.e. age, sex, quintiles of IMD, etc.).
3. We estimated the linear correlation matrix of the quantiles of the exposures of interest in HSE using Pearson's correlation.
4. We used the linear correlation matrix from \#3 to generate streams of uniform random numbers between 0 and 1 with a correlation structure similar to the one observed in HSE. [31]
5. We used the correlated streams of random numbers from \#4 as the exposure quantiles for the synthetic individuals.

For simplicity, we assumed that the correlation structure of the exposure quantiles remains constant over time.

Disease module

The previous two modules for demographics and exposure generate a dynamic close-toreality synthetic population composed of the adult life course exposures of each synthetic individual. The disease module then translates these exposures to disease incidence using a population-attributable risk fraction approach (PARF). [32] We will first describe how the disease incidence is simulated in the model and then how the model simulates mortality.

We have modelled conditions in several different ways depending on the disease and the currently accepted causal associations between risk factors and diseases. The included risk factors and the modelled relationships between risk factors and disease incidence are those where sufficient, good quality data on relative risks were available and where there is sufficient evidence of a causal relationship between a risk factor and incidence of disease. Relative risks were obtained from published systematic reviews and meta-analyses supplemented with systematic literature searches. Supplementary materials A: Disease module details includes a summary of all data sources. Furthermore, we have modelled conditions at a more granular level for some of the conditions within the Cambridge Multimorbidity Score and then aggregated them. Table 2-2 summarises the modelling approach for each condition, and further detail is given in Supplementary materials A: Disease module details.

Disease incidence

To estimate the individualised annual probability of a synthetic individual developing a specific disease conditional on their cumulative risk exposures, we follow a 3-step approach:

Step 1. The incidence proportion attributable to each modelled risk factor by age, sex, and DIMD is estimated, assuming a specific time lag between exposure and disease. The relationships between exposures and disease incidence included in the model are outlined in Table 2-2. The time lags in the model vary stochastically between 1 and 10 years following a shifted binomial distribution. We set the mean lag time for each pair of risk exposure and disease combination according to the best possible empirical data based on the observation period of cohort studies and time to risk reversal in randomised clinical trials (see Table 2-3 and Supplementary materials A: Disease module details). For example, the mean lag time between alcohol intake and an increase in breast cancer risk is 9 years. That means that a change in alcohol intake will take 9 years on average to be translated to a change in breast cancer risk.

Step 2. The portion of the disease incidence attributable to all the modelled risk factors is estimated and subtracted from the total incidence for 2013, assuming multiplicative risks. By multiplicative risk we mean, for example, that if the relative risk (RR) of obesity on CHD is 2 and the RR of smoking on CHD is 3 , then the RR of an obese smoker is assumed to be $2 *$ $3=6 .{ }^{1}$

[^0]Table 2-2: Overview of how individual conditions are modelled

CMS condition	Modelled condition	Recovery and recurrence	Causal relationships	
			Risk factors	Conditions
Dementia	Dementia	No recovery	Y	Y
Cancer	Breast cancer	Recovery after 10 years; no recurrence	Y	Y
	Colorectal cancer	Recovery after 10 years; no recurrence	Y	Y
	Lung cancer	Recovery after 10 years; no recurrence	Y	Y
	Prostate cancer	Recovery after 10 years; no recurrence	Y	N
	Other cancers	Recovery after 10 years; can recur	N	Y
COPD	COPD	No recovery	Y	N
Atrial fibrillation	Atrial fibrillation	No recovery	Y	Y
Heart failure	Heart failure	No recovery	N	Y
Constipation	Constipation	Recovery is stochastic; can recur	N	$\mathrm{Y}+$ past constipation
Epilepsy	Epilepsy	No recovery	N	Y
Chronic pain	Chronic pain	Recovery is stochastic; can recur	N	Y + past chronic pain
Stroke/transient ischaemic attack	Stroke/transient ischaemic attack	No recovery	Y	Y
Diabetes (type I or II)	Diabetes Type 1	No recovery	N	N
	Diabetes Type 2	No recovery	Y	N
Alcohol problems	Alcohol problems	Recovery is stochastic; can recur	N	Past alcohol problems
Psychosis/ bipolar disorder	Psychosis/bipolar disorder	No recovery	N	Y
Chronic kidney disease	Chronic kidney disease	No recovery	Y	N
Anxiety and depression	Anxiety and depression	Recovery is stochastic; can recur	N	$\mathrm{Y}+$ past anxiety and depression
Coronary heart disease	Coronary heart disease	No recovery	Y	Y
Connective tissue disorders	Rheumatoid arthritis	No recovery	N	N
	Other connective tissue disorders	No recovery	N	N
Irritable bowel syndrome	Irritable bowel syndrome	No recovery	N	N
Asthma	Asthma	Recovery is stochastic; can recur	Y	Past asthma
Hearing loss	Hearing loss	No recovery	N	N
Hypertension	Hypertension	No recovery	Y	N

Step 3. The probability of developing the disease is estimated for each individual in the synthetic population and is used in an independent Bernoulli trial to select those who finally develop the disease.

Table 2-3 Causal relationships included in the model between risk factors and disease incidence; the number corresponds to the time lag (in years) between exposure and outcome.

		$\stackrel{Q}{\mathrm{O}}$		$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{y}{*} \end{aligned}$	$\stackrel{\text { U }}{4}$	$\underset{\underset{N}{N}}{\stackrel{\rightharpoonup}{N}}$		$\begin{aligned} & \text { Q } \\ & \hline \text { O} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \bar{む} \\ & 0 \\ & \tilde{0} \\ & \tilde{0} \\ & \mathbb{U} \\ & \tilde{0} \\ & 0 . \end{aligned}$	
Physical activity	9	4	9	4	-	4	-	-	-	-	-	-	5
Alcohol	9	4	9	4	4	5	-	-	-	-	-	-	5
BMI	9	4	9	4	4	5	5	5	9	-	-	-	
ETS	1	1	-	1	-	1	-	-	-	1	1	-	
Fruit	-	4	-	4	-	4	-	-	-	-	9	-	
SBP	-	4	-	4	4	-	-	4	-	-	-	-	5
Smoking	9	4	9	4	4	5	5	-	9	5	9	9	5
Cholesterol	-	4	-	4	-	-	-	-	-	-	-	-	
Vegetable	-	4	-	4	-	-	-	-	-	-	-	-	

BMI = body mass index; ETS = environmental tobacco smoke; SBP = systolic blood pressure;

The implementation of the above method is described in more detail using CHD as an example. The same process is used for all modelled diseases except type 1 diabetes mellitus, rheumatoid arthritis, other connective tissue disorders, irritable bowel syndrome, and hearing loss, which will be described separately.

Step 1

The population-attributable risk fraction (PARF) is an epidemiological measure that estimates the proportion of the disease attributable to an associated risk factor. It depends on the relative risk associated with the risk factor and the prevalence of the risk factor in the population. In a
microsimulation context where exposures to risk factors are known at the individual level and assuming multiplicative risk factors, PARF can be estimated using the formula:

$$
P A R F=1-\frac{n}{\sum_{i=1}^{n}\left(R R_{i 1} * R R_{i 2} * \ldots * R R_{i k}\right)}
$$

where n is the number of synthetic individuals in the population, and $R R_{i 1 . . . i k}$ are the relative risks of the risk factors associated with CHD for each individual i. We calculated PARF based on the above formula stratified by age, sex, DIMD, ethnicity and SHA. Consistent with findings from the respective meta-analyses used for IMPACT ${ }_{\text {NCD }}$ (Supplementary materials A Table A-2), on average SBP below 115 mmHg , total cholesterol below $3.8 \mathrm{mmol} / \mathrm{I}$ and BMI below 22 $\mathrm{Kg} / \mathrm{m}^{2}$ were considered to have a relative risk of $1 .[37]$ Similarly, consumption of eight or more portions of fruit and vegetables and five or more active days (more than 30 minutes of moderate to vigorous activity) per week were also considered to have a relative risk of 1. All the relative risks were taken from published meta-analyses and empirical studies (for references, see Supplementary materials A: Disease module details where we describe each disease).

Step 2

The incidence of CHD not attributable to the modelled risk factors can be estimated by the formula:

$$
I_{\text {Theoretical minimum }}=I_{\text {observed }} *(1-P A R F)
$$

Where $I_{\text {observed }}$ is the CHD incidence and PARF is from Step 1. $I_{\text {Theoretical minimum }}$ represents CHD incidence if all the modelled risk factors were at optimal levels. The theoretical minimum incidence is calculated by age, sex, and QIMD only in the initial year of the simulation, and it is assumed to be stable after that.

Step 3

Assuming that $I_{\text {Theoretical minimum }}$ is the annual baseline probability of a synthetic individual to develop CHD for a given age, sex, DIMD, ethnicity and SHA due to risk factors not included in the model (i.e. genetics, air pollution, dietary exposures beyond fruit and vegetables etc.), the individualised annual probability of developing CHD, $\mathbb{P}(C H D \mid a g e$, sex, DIMD, ethnicity SHA, exposures), given their risk factors were estimated by the formula:

$$
\begin{aligned}
& \mathbb{P}(\text { CHD } \mid \text { age }, \text { sex, DIMD, ethnicity SHA }, \text { exposures })= \\
& =I_{\text {Theoretical minimum }} * R R_{i 1} * R R_{i 2} * R R_{i 3} * \ldots * R R_{i k}
\end{aligned}
$$

Where $R R_{i 1 \ldots i k}$ are the relative risks that are related to the specific risk exposures of the synthetic individual, the same as in step 1.

Estimating the observed incidence probability $I_{\text {Observed }}$

To estimate the observed incidence probability $I_{\text {Observed }}$ we fitted a binomial GAMLSS model to the linked primary care data (CPRD, HES, ONS) with disease incidence probability as the dependent variable and year, age, sex, DIMD, ethnicity and SHA as the independent variables. For type 1 diabetes mellitus, rheumatoid arthritis, other connective tissue disorders, irritable bowel syndrome, and hearing loss that do not depend on any risk factors, we used these models to project their future incidence, assuming log-linear trends. To account for biases in the data, we injected uncertainty of $\pm 5 \%$ (relative) to the estimated disease incidence probability during the simulation.

Initial prevalence

For the initial simulation year, some synthetic individuals must be allocated as prevalent cases for each modelled disease. We fitted a binomial GAMLSS model to the linked primary care data (CPRD, HES, ONS) with disease prevalence probability as the dependent variable and year, age, sex, DIMD, ethnicity and SHA as the independent variables. We used these models to allocate the initial year disease prevalence in the simulation.

Conditions with recovery and recurrence: asthma, anxiety and depression, constipation, pain, alcohol problems and cancers
Asthma, anxiety and depression, constipation, pain, and alcohol problems were treated as short-term conditions that can go into remission and reoccur. Spell duration was stochastically derived from observed durations in the CPRD data. In addition to the risk factor relationships described in Table 2-3, incident cases of these five conditions were associated with a previous history of the condition. Cancers were assumed to go into remission after 10 years, but recurrence was not modelled conditional on cancer history. All other conditions were treated as life-long.

Dependencies between conditions

As the Cambridge Multimorbidity Score (CMS) is a composite measure, it is derived from the combination of conditions an individual has. We, therefore, modelled dependencies between conditions with strong correlations based on our epidemiological understanding and the correlation structure in our linked CPRD data using GAMLSS models to derive relative risks for the effect of prevalent condition A on the incidence of condition B. Figure 2-2 displays the dependencies modelled between a prevalent condition (on the y-axis) and the subsequent incidence of another condition (on the x-axis). Disease dependencies modelled for each incident condition are summarised in Supplementary materials A: Disease module details.

Figure 2-2 - Modelled relationships between conditions ${ }^{2}$

Disease duration

For existing prevalent conditions among simulants at the start of the simulation (2013), the number of years lived with each condition is assigned based on sociodemographic characteristics and duration of the condition derived from administrative data, as derived from GAMLSS models fitted in the linked CPRD data. For the five conditions with remission and recurrence, these models also inform the duration of each disease occurrence.

[^1]Mortality
All synthetic individuals are exposed to the risk of dying from any of their acquired modelled conditions or any other non-modelled cause. We treat the latter as a condition that everyone is a prevalent case of. That allows us to treat it like any other condition in the model. Hearing loss, IBS, asthma, anxiety and depression, constipation, pain, hypertension, and alcohol problems have very low case fatality; hence, we assume that mortality from these conditions is 0 . Furthermore, our dataset had very few CKD deaths, and we could not estimate CKD case fatality accurately. Hence, we assume that CKD mortality is 0 as well. For all other conditions, we fitted GAMLSS models to estimate their case fatality (the probability of a prevalent case of a condition dying of this condition), conditional on year, age, sex, and DIMD. For conditions with high mortality (i.e. CHD), we additionally decomposed case fatality to the first-year postdiagnosis case fatality and the second-year onwards post-diagnosis case fatality. For all potentially fatal conditions, we applied the same PARF approach described above for incidence to the case fatality. For instance, if the RR of smoking on CHD is 3 , we assume that smokers have 3 times the risk of never-smokers to develop CHD and when they do, they have 3 times the risk of never-smokers to die from CHD. Therefore, we allow exposures to risk factors to influence the mortality probability of the simulants. The exception is conditions with explicit first-year case fatality, for which we assumed it is independent of exposure to risk factors and is only conditional on age, sex, and DIMD.

Additionally, using a similar approach to the one we used to model disease incidence, we allowed prevalent cases of T2DM, synthetic individuals with SBP higher than 140 mmHg , active smokers, those with one or less active day per week, and those with excessive alcohol intake to experience higher non-modelled cause mortality rates. [38]

Mortality calibration

All-cause mortality in our linked CPRD dataset was lower than the official mortality estimates that the ONS reports. This appears to be a known issue in CPRD. [39] We, therefore, calibrated the CPRD-driven mortality in the model to the ONS estimates. We first fitted functional demographic models by sex and DIMD to the ONS mortality rate estimates by single year of age from 2001 to 2019. [40,41] Using the R package 'demography', we projected allcause mortality rates to the simulation horizon (2043). [42] Functional demographic models are generalisations of the Lee-Carter demographic model, influenced by ideas from functional data analysis and non-parametric smoothing. [43] We then inflated the case fatality rates of potentially fatal diseases in the simulation by an age/sex/DIMD-specific calibration factor to track the projections of the functional demographic model.

3. Population-attributable risk fraction (PARF)

The IMPACT ${ }_{\text {NCD }}$ model allows for changes in the exposures of synthetic individuals based on defined 'what if' scenarios. The change in exposures allows us to calculate the individual risk factor effects on trends in modelled incidence. We can then compare the disease-related events between the counterfactual life courses.

PARF calculations

We can use the alternative scenario function to estimate PARFs - the proportion of incidence of a condition attributable to specific risk factors. The PARF analysis runs from 2013 and compares the baseline model scenario with scenarios where each risk factor is set to the optimal level in 2013 (see Table 3-1). As the lag time between exposure and incidence differs by condition, for each condition, we compare the baseline and optimal scenario incidences at the latest lag time (Table 3-2). The proportion of the baseline incidence removed under the optimal level scenario gives the PARF. As PARFs are multiplicative and not additive, an additional scenario where all risk factors are set to optimal levels is used to apply a correction factor. Note that in the current implementation, we did not consider the mediated effects of some of the risk factors. i.e. when BMI is reduced, we would expect total cholesterol and SBP to be reduced by some degree for physiological reasons, which we currently ignore.

Table 3-1 Optimal levels for risk factor exposures ${ }^{3}$

Risk Factor	Optimal level
Smoking	Never smoker, no current smoking, no second-hand exposure
BMI	15
Alcohol consumption	0 g
Fruit and veg consumption	400 g (5 portions) of each daily
SBP	90
Total Cholesterol	2
Physical activity	7 active days/week

Table 3-2 Year for PARF calculation

Condition	Year of PARF calculation
Atrial fibrillation	2017
CHD	2017
Stroke	2017
Asthma	2018

[^2]| CKD | 2018 |
| :--- | :--- |
| Type 2 Diabetes Mellitus | 2018 |
| COPD | 2018 |
| Dementia | 2022 |
| Breast Cancer | 2022 |
| Colorectal Cancer | 2022 |
| Lung Cancer | 2022 |
| Prostate Cancer | 2022 |

4. Model outputs

The population in the model for this report was set for England. The model has a time horizon of 30 years, from 2013 to 2043. The simulation begins in 2013 to allow for validation and calibration with the linked primary care data used to inform the model. The model outputs produce life-course trajectories for each simulant, including CMS scores. From these, annual summary measures such as incidence, prevalence and mortality rates are calculated. These measures can then be compared across time and between scenarios to estimate the effects and equity of different scenarios. All outcome measures can be standardised to the 2013 European Standard Population or not, and stratification is possible by year, sex, DIMD and age group, allowing examination of how effects differ across sub-populations.

From the estimated mortality rates of the model, we can also estimate life expectancy as follows. The 2010 and 2019 estimates for period life expectancy use historical ONS mortality rates, [44] and the 2040 estimates use projected mortality changes from the microsimulation model applied to 2019 ONS mortality rates. We then apply REAL Centre estimates of the proportion of people in different health states by 5 -year age bands to the mortality rates to get estimates for the time spent in different states of ill health in 2010 and 2019. For 2040, we use REAL Centre estimates of the proportion of people in different health states by age group and sex from 2019 for those aged under 30 and assume no changes to these proportions until 2040. For those aged 30 and over for 2040, we use the projected estimates of the proportion of people in different health states by age group and sex from the microsimulation model. We use the same methods for estimating the projected absolute numbers of people with and without illness, based on ONS historical mid-year population estimates for 2019 and ONS 2020 projected population estimates for 2040. [45,46]

Crucially, the model is a dynamic, open-cohort microsimulation model. That means the model is trying to estimate the actual impact of the scenarios within a dynamic population where people are born, people age, people's risk factors change, and people die. The detailed
modelling of the population dynamics in our model is thus different from many economic models, which are often closed-cohort, meaning they follow the same population cohort over time and often have a lifetime horizon.

Uncertainty and probabilistic sensitivity analysis

IMPACT $_{\text {NCD }}$ implements a $2^{\text {nd }}$ order Monte Carlo approach to estimate uncertainty intervals (UI) for each scenario. [47,48] For each iteration, a different set of input parameters is used by sampling from the respective distributions of input parameters. We assumed log-normal distributions for relative risks and hazard ratios, normal distributions for coefficients of linear regression equations, and uniform distributions for estimates of incidence, prevalence, and case fatality rates. Specifically, for relative risks and hazard ratios, the distributions were bounded above 1 when the mean was above 1 and vice versa.

IMPACT $_{\text {NCD }}$ allows stochastic uncertainty, parameter uncertainty, individual heterogeneity, and to some extent, structural uncertainty to be propagated in the reported UI. In IMPACT ${ }_{\text {NCD }}$, we minimise stochastic uncertainty by using the same random numbers for all scenarios when appropriate. The following example illustrates the different types of uncertainty considered in the model. Let us assume that the annual risk for CHD is 5%. Suppose we apply this risk to all individuals and randomly draw from a Bernoulli distribution with $p=5 \%$ to select those who will manifest CHD. In that case, we only consider stochastic uncertainty. Our model minimises stochastic uncertainty when we compare different policy scenarios by using the same random numbers for all scenarios, where appropriate. If we allow the annual risk for CHD to be conditional on individual characteristics (i.e. age, sex, exposure to risk factors), then individual heterogeneity is considered. Finally, when the uncertainty of the relative risks due to sampling errors is considered in estimating the annual risk for CHD, the parameter uncertainty is considered. From these three types of uncertainty, only the parameter uncertainty could be reduced by better studies in the future.

The structure of the model is grounded in fundamental epidemiological ideas and wellestablished causal pathways on which exposures are causally related to the specific NCDs which are explicitly modelled. For example, hypertension is causally related to CVD but not lung cancer. Hence, structural sensitivity analysis is not necessary to explore the possibility of hypertension being a risk factor for lung cancer. Therefore, we considered this type of uncertainty relatively small and did not study it in detail, with one exception: the discrete-time bias that arises from the fact that time in IMPACT NCD is not continuous. A synthetic individual within the model may die of multiple causes within one year; however, the discrete-time nature of the simulation does not allow the identification of the cause that 'killed' the simulant first. Every time this happens to a simulant, we randomly select a cause of death from the list of all
the terminal events that occurred for the simulant that year. Hence, we propagate discretetime uncertainty to the output.

5. Validation and calibration

We validated the IMPACT ${ }_{\text {NCD }}$ epidemiological engine using internal validation plotting the modelled exposures' prevalence and disease incidence against the observed exposures' prevalence and disease incidence in HSE and linked primary care data, respectively. Mortality in the model is calibrated to mortality projections as described above (Mortality). We present the relevant validation plots for modelled exposures in Supplementary materials B: exposure modelling details and validation stratified by year and age group and by quintiles of IMD and age group. Figure 5-1 shows the modelled prevalence of CMS > 1.5 (defined as 'major illness' in this report) against the observed CPRD Aurum prevalence. The decline from 2017 in the observed data is an artefact caused by the case definition and consequent prevalence of pain. Validation plots (age-sex-dimd standardised) for incidence, case fatality, and prevalence of individual conditions are shown in Supplementary materials A: Disease module details. Additionally, we have produced and inspected plots for multiple combinations of stratification levels that are available on request. Overall, the plots suggest that IMPACT ${ }_{\text {NCD }}$ captures exposure trends and translates them to disease incidence and mortality reasonably well for the purpose of this project.

Figure 5-1 - Validation plot for the prevalence of CMS > 1.5 (age-sex-dimd standardised)

6. Definition of the Cambridge Multimorbidity Score and defining conditions in primary care data

The Cambridge Multimorbidity Score (CMS) is used to define levels of ill health for an individual and for the population. [11] The CMS assigns a weight or 'score' to 20 conditions on the basis of how the illness affects their use of primary care, emergency health services and the patient's likelihood of death (see Table 6-1 below for the exact weight of each condition).

Our projections draw on detailed patient-level administrative data linked to primary care (CPRD Aurum) and secondary care (Hospital Episode Statistics) from a sample of 1.7 million patients. The data include chronic conditions diagnosed in primary care and the Index of Multiple Deprivation (IMD) score for each patient's local area, age, sex, ethnicity and region. Since our analysis relies on diagnosis data from patient records, all our projections refer to diagnosed prevalence, incidence and illness throughout the report. Due to our focus on the long-term trends in ageing and health and due to our data sample being available up to 2019/20, we do not include COVID-19 and its impacts in our analysis.

The use of diagnosed conditions in administrative primary care data to measure levels of illness has several advantages over using survey data. Administrative data tend to have larger and more representative patient samples and are less subjective than self-reported measures of health in surveys. [49] It is, however, important to note that rates of diagnosis can be impacted by patients' access to care and changes in diagnosis policy and practices over time. Several studies have found underdiagnosis in COPD, [50] hypertension, [51] type 2 diabetes, [52] and dementia, [53] so it is likely that the true burden of illness will be higher than what we estimate in this report.

The CMS is used to define levels of ill health for an individual and for the population. [11] The score provides a metric which allows comparisons of levels of illness across conditions and over time. The CMS assigns a weight or 'score' to 20 conditions based on how the illness affects their use of primary care, emergency health services and the patient's likelihood of death (Table 6-1). For instance, cancer and heart failure are given higher scores than hypertension (high blood pressure) or hearing loss because they are more likely to lead to death, unplanned hospital admissions or greater primary care needs. For those with multimorbidity, scores are added together, meaning individuals with the same score can have a different number and combination of conditions.

We use the CMS rather than other multimorbidity indices such as Charlson [54] and Elixhauser, [55] as it is more representative of conditions that are highly prevalent today and because it outperforms the Charlson index in predicting primary care consultations and hospital admissions and, to a lesser extent, mortality. [11]

Table 6-1 Cambridge Multimorbidity Score conditions and their weights

Condition	Primary care consultations ${ }^{1}$	Unplanned admissions ${ }^{2}$	Mortality ${ }^{2}$	General outcome ${ }^{3}$
Dementia	1.81	156.9	124.42	2.50
Cancer	2.58	104.8	62	1.53
COPD	3.43	134.51	42.5	1.46
Atrial fibrillation	5.94	105.21	22.14	1.34
Heart failure	2.9	73.2	43.47	1.18
Constipation	3.42	72.73	35.42	1.12
Chronic pain	3.43	84.93	16.46	0.92
Epilepsy	2.13	113.42	18.26	0.92
Stroke/transient ischaemic attack (TIA)	1.54	90.84	20.63	0.80
Diabetes (type 1 or 2)	3.77	55.33	10.23	0.75
Alcohol problems	0.97	93.59	12.72	0.65
Psychosis/bipolar disorder	2.24	77.28	7.2	0.64
Chronic kidney disease	0.98	52.13	16.61	0.53
Anxiety/depression	2.12	46.61	7.04	0.50
Coronary heart disease	1.49	70.87	4.22	0.49
Connective tissue disorders	3.1	28.87	-0.39	0.43
Irritable bowel syndrome	1.82	8.55	-1.33	0.21
Asthma	1.32	22.78	-2.73	0.19
Hearing loss	1.04	8.93	-3.94	0.09
Hypertension	0.66	10.76	-2.09	0.08

Note: 1. Per person-year. 2. Per 1000 person-years. 3. Unit change associated with a change of 1 standard deviation in each of the 3 outcomes. Negative weights can be interpreted as reflecting a negative association with the outcome of interest after controlling for other conditions. Constipation, when diagnosed in primary care data, is likely linked to the side effects of taking opioid analgesics (strong pain killers such as codeine phosphate) and other medication. Chronic pain that leads to opioid prescribing tends to be worse, and therefore constipation could be linked with higher care needs.

Of the 20 conditions in our analysis, most are considered "permanent" because there is no cure: once someone is diagnosed with a condition, like atrial fibrillation, they will forever have that condition. For six of the conditions observed to be more transient in the data, we allow
patients to go into remission: cancer, asthma, anxiety and depression, alcohol problems, constipation and chronic pain.

The code lists used for the CMS, available online, [56] have been developed using CPRD GOLD based on read codes, medcodes and prodcodes. In this report, we use data from CPRD Aurum. Table 6-2 summarises the definitions for each condition used in this report and in the original CMS paper. We use code lists for CPRD developed by Anna Head, available on GitHub [57] and adapted from code lists from the CALIBER algorithms ${ }^{4}$. [58] Table 6-3 and Figure 6-1 summarise the sample inclusion and exclusion criteria along with the cleaning rules applied to the initial 2 million random sample of patients from CPRD Aurum.

Table 6-2 Definition of the conditions in the Cambridge Multimorbidity Score

Condition	In this report
Alcohol problems	At least one code recorded (in CPRD Aurum or HES) in the last 12 months. Remission after 12 months without new diagnosis. The code list for alcohol misuse excludes 'alcoholic liver disease'.
Asthma	At least one code recorded (in CPRD Aurum or HES) in the last 12 months. Remission after 12 months without new diagnosis.
Anxiety/depression	At least one code recorded for anxiety OR depression in the last 12 months (in CPRD Aurum or HES). Remission after 12 months without new diagnosis.
Atrial fibrillation	At least one code ever recorded (in CPRD Aurum or HES).
All cancers	At least one code recorded (in CPRD Aurum or HES) for either bowel, lung, prostate or any other cancer. Remission after 10 years since the first diagnosis of the last cancer, if more than one.
Chronic kidney disease	Based on at least two records (in CPRD Aurum) of test values (eGFR) < 60ml/min, corresponding to a diagnosis of CKD of stage 3 or above. The
two records must be at least within a 90-day interval.	
	OR At least one CKD observation code ever recorded (in CPRD Aurum or HES)
Chronic pain	At least four prescriptions (in CPRD Aurum) for painkiller drugs in the span of a year (analgesics or epilepsy drugs if not diagnosed with epilepsy).
Remission after 12 months without new prescriptions.	

4 Available here https://www.caliberresearch.org/portal/phenotypes/chronological-map and in machine-readable format here https://github.com/spiros/chronological-map-phenotypes.

Hearing loss	At least one code ever recorded (in CPRD Aurum or HES).
Heart failure	At least one code ever recorded (in CPRD Aurum or HES).
Hypertension	At least one code ever recorded (in CPRD Aurum or HES).
Irritable bowel syndrome (IBS)	At least one code ever recorded (in CPRD Aurum or HES).
Psychosis	At least one code ever recorded (in CPRD Aurum or HES).
Stroke/Transient ischaemic attack (TIA)	At least one code ever recorded for stroke OR TIA (in CPRD Aurum or HES).

Table 6-3 Sample exclusions and cleaning rules

Type	Rule
Sample inclusion/exclusion	Exclude duplicate CPRD patient IDs, keep the most recent one*
	Exclude if not eligible (linkable) for all 5 datasets (CPRD, ONS, HES, cancer registry, mental health) (linkage eligibility file)**
	Exclude if entered the study after 31 March 2020 (as the data contain no HES records after 31st October 2020)
	Exclude implausible linkage**, ie. different number of linkages to HES and ONS registry data
	Exclude implausible linkage, ie. end of registration or death before patient's start of registration with the practice (regstartdate)
	Exclude patients who are active in the sample for less than one year**, unless they are <1 year old (to be used to calculate infant mortality rates)
	Exclude if missing IMD (deprivation) and missing ethnicity
	Use ONS' date of death (dod) if recorded; otherwise, use date of death recorded in CPRD (emis_ddate) or estimated by CPRD (cprd_ddate) if ONS date of death is missing and if the CPRD date of death is between 1 Nov 2019-31 Oct 2020 (i.e. one year before end of sample eligibility) to account for ONS delays in transmitting death information.
Cleaning of patient variables	Use earliest of: CPRD registration end date (regenddate in patient file), date of death (ONS file's date of death (dod) if available, or cprd_ddate (CPRD patient file) if between 1 Nov 2019 and 31 Oct 2020), practice last collection date (/cd in practice file), 31 October 2020 (HES data not available after this)
	Use most common ethnicity recorded across all sources (CPRD, HES inpatient, outpatient, A\&E); unless it is 'Unknown', use nonunknown record of ethnicity. If tie in most common ethnicity, use the most recently recorded.
	Where date of observation (obsdate) is recorded, use obsdate; use the date the event was entered into the practice system (enterdate) otherwise.
	If date of observation (obsdate) is before 1900 or after 2021, and the date the event was recorded (enterdate) is between 1900-2021, use

	enterdate; if enterdate is outside of 1900-2021, we drop the observation ${ }^{5}$.
If date of observation (obsdate) is before patient's year of birth, but the date the event was recorded (enterdate) is after, we use the latter. If both dates are before year of birth, we drop the observation.	
Remove observations of type 'family history' If missing date of the start of the hospital episode (epistart in HES files), we replace it with date of the end of the hospital episode (epiend).	
If missing date of the procedure (evdate), we replace it with date of the start of the hospital episode (epistart).	
Recode as prevalence if a new diagnosis takes place within a year of registration with a new practice.	
Prevalence modelling	For resolving conditions, if the date of a new diagnosis is within 365 days of the remission date of the previous disease spell, we recode it to be part of the same disease episode.

Note: * this is identified by the highest CPRD patient ID number; ** these are cleaning rules commonly implemented when using CPRD (e.g. see (1)).
${ }^{5}$ This is because a diagnosis will likely be picked up in other primary or secondary care activity while inferring diagnosis dates wrongly will introduce errors in our age-specific prevalence rates.

7. Strengths and limitations of this modelling approach

The IMPACT ${ }_{\text {NCD }}$ model is an advanced, validated, flexible microsimulation of the dynamics of NCDs in a population, including important NCDs that are amenable to prevention and provide support to a range of capabilities to conduct state-of-the-art effectiveness and equity analysis.

The complex dynamic generated by reductions in risk factors and disease trends needs to be modelled for a more realistic estimate of the future burden of illness from a societal perspective, which includes competing causes of illness and death. For instance, the model factors in that if CHD incidence is delayed, people may live longer and be more likely to get any of the other modelled diseases. This was evident in our projections, where, for example, the number of COPD cases increased because of people living longer. The modelling of individual conditions allows in-depth exploration of how trends in risk factors may impact the future burden of multimorbidity.

All such modelling analyses have limitations. This iteration of the model uses exposure data from HSE waves up to 2014; however, we know that there have been changes in more recent years to both overall trends and socioeconomic inequalities. Furthermore, the data that informs our model is from before the coronavirus pandemic and therefore does not capture any of the impacts of the coronavirus or pandemic-related restrictions. The use of HSE data from 2003-2014 was based on several reasons. Most importantly, during this time period there is consistent recording of risk factors based on age, decile of IMD, ethnicity and geographic region over time. This allows us to separately model the projected incidence of long-term illness for different population subgroups. Although later versions of HSE are available, differences in survey methodology meant it was not possible to include them in this model. As we have used data from HSE for the period between 2003-2014, some trends in risk factors differ from those reported by OHID and PHE Fingertips for the period between 2014-present day.

We derived trends in disease incidence, prevalence, and mortality, from CPRD data (GP practices) linked to HES (secondary care data) and ONS (cause of death) records. CPRD and HES data only provide information from where individuals have accessed healthcare and diagnostic information has been recorded. Whilst CPRD data is collated directly from GP records, HES data is an administrative summary of each episode of care. As such, our analyses measure only diagnosed cases of conditions and do not capture unmet needs. Whilst this linked primary care data largely represents the population of England registered with primary care providers, it is slightly less representative compared to the overall population of England: marginalised groups and those from the most deprived areas are underrepresented.

We have modelled dependencies between certain diseases based on the strength of the correlations and clinical understanding. In future iterations of the model, we plan to improve the modelling of disease clusters by including additional disease-disease interactions.

8. References

1. Collins B, Kypridemos C, Cookson R, Parvulescu P, McHale P, Guzman-Castillo M, et al. Universal or targeted cardiovascular screening? Modelling study using a sectorspecific distributional cost effectiveness analysis. Prev. Med. 2020;130:105879.
2. Collins B, Kypridemos C, Pearson-Stuttard J, Huang Y, Bandosz P, Wilde P, et al. FDA Sodium Reduction Targets and the Food Industry: Are There Incentives to Reformulate? Microsimulation Cost-Effectiveness Analysis. Milbank Q. 2019;97:858-80.
3. Huang Y, Kypridemos C, Liu J, Lee Y, Pearson-Stuttard J, Collins B, et al. CostEffectiveness of the US Food and Drug Administration Added Sugar Labeling Policy for Improving Diet and Health. Circulation 2019;139:2613-24.
4. Kypridemos C, Allen K, Hickey GL, Guzman-Castillo M, Bandosz P, Buchan I, et al. Cardiovascular screening to reduce the burden from cardiovascular disease: microsimulation study to quantify policy options. BMJ 2016;353:i2793.
5. Kypridemos C, Collins B, McHale P, Bromley H, Parvulescu P, Capewell S, et al. Future cost-effectiveness and equity of the NHS Health Check cardiovascular disease prevention programme: Microsimulation modelling using data from Liverpool, UK. PLoS Med. 2018;15:e1002573.
6. Kypridemos C, Guzman-Castillo M, Hyseni L, Hickey GL, Bandosz P, Buchan I, et al. Estimated reductions in cardiovascular and gastric cancer disease burden through salt policies in England: an IMPACTNCD microsimulation study. BMJ Open 2017;7:e013791.
7. Laverty AA, Kypridemos C, Seferidi P, Vamos EP, Pearson-Stuttard J, Collins B, et al. Quantifying the impact of the Public Health Responsibility Deal on salt intake, cardiovascular disease and gastric cancer burdens: interrupted time series and microsimulation study. J. Epidemiol. Community Health 2019;73:881-7.
8. Nilson EAF, Pearson-Stuttard J, Collins B, Guzman-Castillo M, Capewell S, O'Flaherty M , et al. Estimating the health and economic effects of the voluntary sodium reduction targets in Brazil: microsimulation analysis. BMC Med. 2021;19:225.
9. O'Flaherty M, Lloyd-Williams F, Capewell S, Boland A, Maden M, Collins B, et al. Modelling tool to support decision-making in the NHS Health Check programme: workshops, systematic review and co-production with users. Health Technol. Assess. Winch. Engl. 2021;25:1-234.
10. Pearson-Stuttard J, Kypridemos C, Collins B, Mozaffarian D, Huang Y, Bandosz P, et al. Estimating the health and economic effects of the proposed US Food and Drug Administration voluntary sodium reformulation: Microsimulation cost-effectiveness analysis. PLoS Med. 2018;15:e1002551.
11. Payne RA, Mendonca SC, Elliott MN, Saunders CL, Edwards DA, Marshall M, et al. Development and validation of the Cambridge Multimorbidity Score. CMAJ Can. Med.

Assoc. J. [Internet] 2020 [cited 2022 Jan 5];192:E107-14. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004217/
12. Office for National Statistics. Lower layer Super Output Area population estimates (supporting information) - Office for National Statistics [Internet]. [cited 2018 Dec 14];Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/popula tionestimates/datasets/lowersuperoutputareamidyearpopulationestimates
13. Office for National Statistics. LC2101EW (Ethnic group by sex by age) - Nomis - Official Labour Market Statistics [Internet]. 2013 [cited 2020 Feb 11];Available from: https://www.nomisweb.co.uk/census/2011/lc2101ew
14. Population projections for local authorities: Table 2 - Office for National Statistics [Internet]. [cited 2022 Feb 18];Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/popula tionprojections/datasets/localauthoritiesinenglandtable2
15. National population projections - Office for National Statistics [Internet]. [cited 2024 Mar 26];Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/popula tionprojections/bulletins/nationalpopulationprojections/2021 basedinterim
16. National Centre for Social Research, University College London. Department of Epidemiology and Public Health. Health Survey for England, 2003 [computer file]. 2nd Edition. Colchester, Essex: UK Data Archive [distributor] [Internet]. 2010 [cited 2014 May 1];Available from: http://dx.doi.org/10.5255/UKDA-SN-5098-1
17. National Centre for Social Research, University College London. Department of Epidemiology and Public Health. Health Survey for England, 2004 [computer file]. 2nd Edition. Colchester, Essex: UK Data Archive [distributor] [Internet]. 2010 [cited 2014 May 1];Available from: http://dx.doi.org/10.5255/UKDA-SN-5439-1
18. National Centre for Social Research, University College London. Department of Epidemiology and Public Health. Health Survey for England, 2005 [computer file]. 3rd Edition. Colchester, Essex: UK Data Archive [distributor] [Internet]. 2011 [cited 2014 May 1];Available from: http://dx.doi.org/10.5255/UKDA-SN-5675-1
19. National Centre for Social Research, University College London. Department of Epidemiology and Public Health. Health Survey for England, 2006 [computer file]. 4th Edition. Colchester, Essex: UK Data Archive [distributor] [Internet]. 2011 [cited 2014 May 1];Available from: http://dx.doi.org/10.5255/UKDA-SN-5809-1
20. National Centre for Social Research, University College London. Department of Epidemiology and Public Health. Health Survey for England, 2007 [computer file]. 2nd Edition. Colchester, Essex: UK Data Archive [distributor] [Internet]. 2010 [cited 2014 May 1];Available from: http://dx.doi.org/10.5255/UKDA-SN-6112-1
21. National Centre for Social Research, University College London. Department of Epidemiology and Public Health. Health Survey for England, 2008 [computer file]. 4th Edition. Colchester, Essex: UK Data Archive [distributor] [Internet]. 2013 [cited 2014 May 1];Available from: http://dx.doi.org/10.5255/UKDA-SN-6397-2
22. National Centre for Social Research, University College London. Department of Epidemiology and Public Health. Health Survey for England, 2009 [computer file]. 2nd

Edition. Colchester, Essex: UK Data Archive [distributor] [Internet]. 2011 [cited 2014 May 1];Available from: http://dx.doi.org/10.5255/UKDA-SN-6732-1
23. NatCen Social Research, Royal Free, University College London. Department of Epidemiology and Public Health. Health Survey for England, 2010 [computer file]. 2nd Edition. Colchester, Essex: UK Data Archive [distributor] [Internet]. 2012 [cited 2014 May 1];Available from: http://dx.doi.org/10.5255/UKDA-SN-6986-2
24. NatCen Social Research, University College London. Department of Epidemiology and Public Health. Health Survey for England, 2011 [computer file]. Colchester, Essex: UK Data Archive [distributor] [Internet]. 2013 [cited 2014 May 1];Available from: http://dx.doi.org/10.5255/UKDA-SN-7260-1
25. NatCen Social Research, University College London. Department of Epidemiology and Public Health. Health Survey for England, 2012 [computer file]. Colchester, Essex: UK Data Archive [distributor] [Internet]. 2014 [cited 2014 May 1];Available from: http://dx.doi.org/10.5255/UKDA-SN-7480-1
26. NatCen Social Research, University College London. Department of Epidemiology and Public Health. Health Survey for England, 2013 [computer file]. Colchester, Essex: UK Data Archive [distributor] [Internet]. 2015 [cited 2016 May 1];Available from: http://dx.doi.org/10.5255/UKDA-SN-7649-1
27. NatCen Social Research, University College London. Department of Epidemiology and Public Health. Health Survey for England, 2014 [computer file]. Colchester, Essex: UK Data Archive [distributor] [Internet]. 2016 [cited 2016 May 1];Available from: http://dx.doi.org/10.5255/UKDA-SN-7919-1
28. Stasinopoulos MD, Rigby RA, Heller GZ, Voudouris V, De Bastiani F. Flexible regression and smoothing: using GAMLSS in R. Boca Raton: CRC Press/Taylor \& Francis Group; 2017.
29. Rigby RA, Stasinopoulos MD, Heller GZ, De Bastiani F. Distributions for Modelling Location, Scale, and Shape Using GAMLSS in R. [Internet]. New York: CRC Press LLC; 2019 [cited 2019 Nov 7]. Available from: http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5909942
30. Suen SC, Goldhaber-Fiebert JD, Basu S. Matching Microsimulation Risk Factor Correlations to Cross-sectional Data: The Shortest Distance Method. Med. Decis. Mak. Int. J. Soc. Med. Decis. Mak. 2018;38:452-64.
31. Embrechts P, Lindskog F, Mcneil A. Modelling Dependence with Copulas and Applications to Risk Management [Internet]. In: Handbook of Heavy Tailed Distributions in Finance. Elsevier; 2003 [cited 2020 Feb 13]. page 329-84.Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780444508966500108
32. Levin ML. The occurrence of lung cancer in man. Acta - Unio Int. Contra Cancrum 1953;9:531-41.
33. Andersson T, Alfredsson L, Källberg H, Zdravkovic S, Ahlbom A. Calculating measures of biological interaction. Eur. J. Epidemiol. [Internet] 2005 [cited 2023 May 25];20:5759. Available from: https://doi.org/10.1007/s10654-005-7835-x
34. Mehta N, Preston S. Are Major Behavioral and Sociodemographic Risk Factors for Mortality Additive or Multiplicative in Their Effects? Soc. Sci. Med. 1982 [Internet] 2016
[cited 2023 25];154:93-9. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599176/
35. Comparative quantification of health risks [Internet]. Geneva: World Health Organisation;

2004 [cited 2014 Jan 30]. Available from: https://www.who.int/publications//iitem/9241580313
36. Murray CJL, Aravkin AY, Zheng P, Abbafati C, Abbas KM, Abbasi-Kangevari M, et al. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet [Internet] 2020 [cited 2020 Oct 19];396:1223-49. Available from: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30752-2/abstract
37. Singh GM, Danaei G, Farzadfar F, Stevens GA, Woodward M, Wormser D, et al. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLOS ONE [Internet] 2013 [cited 2016 Dec 13];8:e65174. Available
from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone. 0065174
38. Stringhini S, Carmeli C, Jokela M, Avendaño M, Muennig P, Guida F, et al. Socioeconomic status and the 25×25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1.7 million men and women. Lancet [Internet] 2017 [cited 2017 Feb 3];389:1229-37. Available from: http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(16)32380-7/abstract
39. Schmidt JCF, Lambert PC, Gillies CL, Sweeting MJ. Patterns of rates of mortality in the Clinical Practice Research Datalink. PLOS ONE [Internet] 2022 [cited 2023 Mar 7];17:e0265709. Available from: https://dx.plos.org/10.1371/journal.pone. 0265709
40. Number of deaths and populations in deprivation decile areas by sex and single year of age, England and Wales, registered years 2019 - Office for National Statistics [Internet]. [cited 2022 Feb 18];Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/dea ths/adhocs/12413deathregistrationsandpopulationsbyindexofmultipledeprivationimddeci leenglandandwales2019
41. Number of deaths and populations in deprivation decile areas by sex and single year of age, England and Wales, registered years 2001 to 2018 - Office for National Statistics [Internet]. [cited 2022 Feb 18];Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/dea ths/adhocs/11169deathregistrationsandpopulationsbyindexofmultipledeprivationenglan d2001to2018
42. Hyndman RJ. demography: Forecasting mortality, fertility, migration and population data [Internet]. 2017;Available from: http://CRAN.R-project.org/package=demography
43. Hyndman RJ, Shahid Ullah Md. Robust forecasting of mortality and fertility rates: A functional data approach. Comput. Stat. Data Anal. [Internet] 2007 [cited 2014 Oct 28];51:4942-56. Available from: http://www.sciencedirect.com/science/article/pii/S0167947306002453
44. Expectation of life, principal projection, England - Office for National Statistics [Internet]. [cited 2023 May 9];Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifee xpectancies/datasets/expectationoflifeprincipalprojectionengland
45. Estimates of the population for the UK, England, Wales, Scotland and Northern Ireland Office for National Statistics [Internet]. [cited 2023 May 9];Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/popula tionestimates/datasets/populationestimatesforukenglandandwalesscotlandandnortherni reland
46. Principal projection - England population in age groups - Office for National Statistics [Internet]. [cited 2023 May 9];Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/popula tionprojections/datasets/tablea24principalprojectionenglandpopulationinagegroups
47. Koerkamp BG, Stijnen T, Weinstein MC, Hunink MGM. The combined analysis of uncertainty and patient heterogeneity in medical decision models. Med. Decis. Making [Internet] 2011 [cited 2015 Mar 18];31:650-61. Available from: http://mdm.sagepub.com/content/31/4/650
48. Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher MJ, Paltiel AD. Model parameter estimation and uncertainty: a report of the ISPOR-SMDM modeling good research practices Task Force-6. Value Health [Internet] 2012 [cited 2013 Oct 7];15:83542 Available from: http://www.sciencedirect.com/science/article/pii/S1098301512016592
49. How accurate are self-reported diagnoses? Comparing self-reported health events in the English Longitudinal Study of Ageing with administrative hospital records [Internet]. Inst. Fisc. Stud. [cited 2023 May 9];Available from: https://ifs.org.uk/publications/how-accurate-are-self-reported-diagnoses-comparing-self-reported-health-events-english
50. Nacul L, Soljak M, Samarasundera E, Hopkinson NS, Lacerda E, Indulkar T, et al. COPD in England: a comparison of expected, model-based prevalence and observed prevalence from general practice data. J. Public Health 2011;33:108-16.
51. Petersen J, Benzeval M. Untreated hypertension in the UK household population — Who are missed by the general health checks? Prev. Med. Rep. 2016;4:81-6.
52. Whicher CA, O'Neill S, Holt RIG. Diabetes in the UK: 2019. Diabet. Med. 2020;37:2427.
53. Ford E, Rooney P, Oliver S, Hoile R, Hurley P, Banerjee S, et al. Identifying undetected dementia in UK primary care patients: a retrospective case-control study comparing machine-learning and standard epidemiological approaches. BMC Med. Inform. Decis. Mak. 2019;19:248.
54. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987;40:373-83.
55. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity Measures for Use with Administrative Data. Med. Care 1998;36:8.
56. CPRD @ Cambridge. Code Lists - Primary Care Unit [Internet]. 2018 [cited 2022 Mar 16];Available from: https://www.phpc.cam.ac.uk/pcu/research/researchgroups/crmh/cprd_cam/codelists/
57. Head A. CPRD_multimorbidity_codelists [Internet]. 2022 [cited 2023 May 9]. Available from: https://github.com/annalhead/CPRD_multimorbidity_codelists
58. Kuan V, Denaxas S, Gonzalez-Izquierdo A, Direk K, Bhatti O, Husain S, et al. A chronological map of 308 physical and mental health conditions from 4 million individuals in the English National Health Service. Lancet Digit. Health 2019;1:e63-77.

A)Supplementary materials A: Disease module details

The following subsections present the assumptions, data sources, structural diagram, and validation plots for each condition.
Incidence, prevalence, case-fatality and mortality trends are modelled using GAMLSS models fitted to the CPRD data by sex, age group, deprivation decile, and year.

Disease dependencies are where the incidence of the condition of interest is associated with the prevalence of other condition(s). These were included based on the strength of correlations and known plausible directional associations and modelled as relative risks by sex, age group, and deprivation decile, using logistic regression.

For some conditions, calibration factors were applied based on visual inspection of the simulated data against the observed data. Two types of calibration factors were used: intercept and trend. The intercept calibration factor is multiplied by the simulated incidence to shift it up (calibration factor >1) or down (calibration factor <1). The trend calibration factor is applied as an exponential based on the number of years since the start of the simulation. For all case fatality rate plots, the model output is post-calibrated to the ONS mortality; therefore, it is expected to be higher than the CPRD observed mortality.

Model structure

Figure A-1 is a 'birds-eye' diagrammatic presentation of all the relationships modelled between risk factors and conditions and between pairs of conditions, as described in the above sections. As this is difficult to read and interpret, the structural diagram for the relationships affecting each modelled condition is presented alongside the individual condition summaries in the following sub-sections.

In all the diagrams, conditions are in blue and modelled exposures are in red. Modelled associations between risk factors and conditions are shown by the red arrows; modelled associations between prevalent condition x and incident condition y are shown by the blue arrows.

In the disease-specific sub-sections, the incident condition of interest is in black text in the centre, and all direct relationships modelled between exposures and other conditions are shown by the arrows pointing towards the middle.

Figure A-1 Relationships modelled between exposures and conditions.

Coronary Heart Disease (CHD)
Table A-1 Modelling assumptions for incident CHD

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	Smoking, environmental tobacco smoke, systolic blood pressure, total cholesterol, body mass index, physical activity, alcohol intake, fruit and vegetable intake

Figure A-2 - Causal structure of risk factor associations and disease dependencies for incident CHD

Table A-2 - Data sources for causal associations between risk factors and CHD incidence

Parameter	Details	Comments	Source
Relative risk for active smoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for exsmoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for environmental tobacco smoking	Meta-analysis of 10 cohort and case-control studies	Adjusted for important CHD risk factors. The effect was applied to never regularly smokers.	He J, Vupputuri S, Allen K, Prerost MR, Hughes J, Whelton PK. Passive Smoking and the Risk of Coronary Heart Disease - A Meta-Analysis of Epidemiologic Studies. N Engl J Med 1999;340:920-6. (Table 3. Adjusted RR)

Parameter	Details	Comments	Source
Relative risk for systolic blood pressure	Meta-analysis of individual data from 61 prospective studies	Stratified by age and sex. Adjusted for regression dilution and total blood cholesterol and, where available, lipid fractions (HDL and non-HDL cholesterol), diabetes, weight, alcohol consumption, and smoking at baseline.	Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. The Lancet 2002;360:1903-13. (Figures 3 and 5)
Relative risk for total cholesterol	Meta-analysis of individual data from 61 prospective studies	Stratified by age and sex. Adjusted for regression dilution and age, sex, study, systolic blood pressure and smoking.	Prospective Studies Collaboration. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55000 vascular deaths. The Lancet 2007;370:1829-39. (Web-table 6 fully adjusted and Figure 3)
Relative risk for body mass index	Meta-analysis of 58 prospective studies	Stratified by age. Adjusted for age, sex, smoking status, systolic blood pressure, history of diabetes, and total and HDL cholesterol.	The Emerging Risk Factors Collaboration. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. The Lancet 2011;377:1085-95. (Table 1 and Figure 2)

Parameter	Details	Comments	Source
Relative risk for diabetes mellitus type 2	Meta-analysis of 102 prospective studies	Stratified by age. Adjusted for age, smoking status, body-mass index, and systolic blood pressure.	The Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. The Lancet 2010;375:2215-22. (Figure 2)
Relative risk for physical activity	Meta-analysis of 18 cohort studies for CHD and 8 cohort studies for ischaemic stroke	Stratified by age and sex. Adjusted for measurement error, age, sex, smoking, blood pressure and cholesterol.	Bull FC, Armstrong TP, Dixon T, Ham S, Neiman A, Pratt M. Comparative quantification of health risks. Chapter 10: physical inactivity. Geneva: World Health Organisation; 2004. (Tables 10.19 and 10.20)
Relative risk for fruit and vegetable consumption	Meta-analysis of 9 cohort studies	RR per portion of $F \& V$. Multiplyadjusted.	Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and Vegetable Consumption and Risk of Coronary Heart Disease: A Meta-Analysis of Cohort Studies. J Nutr 2006;136:2588-93.
Relative risk for alcohol intake	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/abd-2019-relative-risks

Parameter	Details	Comments	Source
Exposure levels below	Pooling of 123	Data on 1.4 million individuals	Singh GM, Danaei G, Farzadfar F, Stevens GA,
which no excess risk for	cohorts	and 52,000 CVD events. We	Woodward M, Wormser D, et al. The age-specific
cardiometabolic disease		assumed the levels are similar	quantitative effects of metabolic risk factors on
is assumed for SBP,		for other diseases beyond	cardiovascular diseases and diabetes: a pooled analysis.
BMI, and total	cardiometabolic.	PLOS ONE 2013;8:e65174.	
cholesterol			

Validation plots for CHD incidence, case fatality, and prevalence

Figure A-3 - Validation plot for modelled CHD incidence (age-sex-dimd standardised)

0.2%

Type — Modelled - Observed

Figure A-4 - Validation plot for modelled CHD case fatality (age-sex-dimd standardised)

Type \rightarrow Modelled - Observed

Figure A-5 - Validation plot for modelled CHD prevalence (age-sex-dimd standardised)

Type \rightarrow Modelled \rightarrow Observed

Stroke (including transient ischaemic attack (TIA))
Table A-3 - Modelling assumptions for incident stroke

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	Smoking, environmental tobacco smoke, systolic blood pressure, total cholesterol, body mass index, physical activity, alcohol intake, fruit and vegetable intake
Disease dependencies	Atrial fibrillation, diabetes mellitus type 2
Calibration factor	Intercept: 0.99
	Trend: 1.005

Figure A-6-Causal structure of risk factor associations and disease dependencies for incident stroke

Table A-4 - Data sources for causal associations between risk factors and stroke incidence

Parameter	Details	Comments	Source
Relative risk for active smoking	GBD meta-analysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for ex-smoking	GBD meta-analysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for environmental tobacco smoking	Meta-analysis of 20 prospective, casecontrol and crosssectional studies	13 studies adjusted for important CHD risk factors. The overall effect from all 20 studies was used. The effect was applied to never regularly smokers.	Oono IP, Mackay DF, Pell JP. Meta-analysis of the association between secondhand smoke exposure and stroke. J Public Health 2011;33:496-502. (Figure 1)

Relative risk fo systolic blood pressure	Meta-analysis of individual data from 61 prospective studies	Stratified by age and sex. Adjusted for regression dilution and total blood cholesterol and, where available, lipid fractions (HDL and non-HDL cholesterol), diabetes, weight, alcohol consumption, and smoking at baseline.	Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. The Lancet 2002;360:190313. (Figures 3 and 5)
Relative risk fo total cholesterol	Meta-analysis of individual data from 61 prospective studies	Stratified by age and sex. Adjusted for regression dilution and age, sex, study, systolic blood pressure and smoking.	Prospective Studies Collaboration. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a metaanalysis of individual data from 61 prospective studies with 55000 vascular deaths. The Lancet 2007;370:1829-39. (Webtable 6 fully adjusted and Figure 3)
Relative risk fo body mass index	Meta-analysis of 58 prospective studies	Stratified by age. Adjusted for age, sex, smoking status, systolic blood pressure, history of diabetes, and total and HDL cholesterol.	The Emerging Risk Factors Collaboration. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. The Lancet 2011;377:1085-95. (Table 1 and Figure 2)
Relative risk fo diabetes mellitu type 2	Meta-analysis of 102 prospective studies	Stratified by age. Adjusted for age, smoking status, body-mass index, and systolic blood pressure.	The Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. The Lancet 2010;375:2215-22. (Figure 2)

Relative risk for physical activity	Meta-analysis of 18 cohort studies for CHD and 8 cohort studies for ischaemic stroke	Stratified by age and sex. Adjusted for measurement error, age, sex, smoking, blood pressure and cholesterol.	Bull FC, Armstrong TP, Dixon T, Ham S, Neiman A, Pratt M. Comparative quantification of health risks. Chapter 10: physical inactivity. Geneva: World Health Organisation; 2004. (Tables 10.19 and 10.20)
Relative risk for fruit and vegetable consumption	Meta-analysis of 7 cohort studies	RR per portion of F\&V. Multiplyadjusted.	Dauchet L, Amouyel P, Dallongeville J. Fruit and vegetable consumption and risk of stroke A meta-analysis of cohort studies. Neurology 2005;65:1193-7.
Relative risk for alcohol intake	GBD meta-analysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for atrial fibrillation	Cohort study	Ages < 65 are an extrapolation	Yuan Z, Bowlin S, Einstadter D, Cebul RD, Conners AR Jr, Rimm AA. Atrial fibrillation as a risk factor for stroke: a retrospective cohort study of hospitalized Medicare beneficiaries. Am J Public Health 1998 Mar;88(3):395-400

Validation plots for stroke incidence, case fatality, and prevalence

Figure A-7 - Validation plot for modelled stroke incidence (age-sex-dimd standardised)

Type — Modelled - Observed

Figure A-8 - Validation plot for modelled stroke case fatality (age-sex-dimd standardised)

Type \rightarrow Modelled - Observed

Figure A-9 - Validation plot for modelled stroke prevalence (age-sex-dimd standardised)

Type \rightarrow Modelled - Observed

Breast cancer
Table A-5 - Modelling assumptions for incident breast cancer

Component	Assumptions / Details
Disease type	Recovery after 10 years; no recurrence; women only
Risk factor associations	Smoking, environmental tobacco smoke, body mass index, physical activity, alcohol intake
Disease dependencies	Diabetes mellitus type 2
Calibration factor	None

Figure A-10-Causal structure of risk factor associations and disease dependencies for incident breast cancer

Table A-6 - Data sources for causal associations between risk factors and breast cancer incidence

Parameter	Details	Comments	Source
Relative risk for active smoking	Random effect meta-analysis of 27 prospective and 44 retrospective studies	The results were stable across different subgroup analyses, notably pre/post-menopause, alcohol consumption adjustments, including/excluding passive smokers from the referent group.	Macacu A, Autier P, Boniol M, Boyle P. Active and passive smoking and risk of breast cancer: a meta-analysis. Breast Cancer Res Treat 2015;154:213-24. (Table 1)
Relative risk for ex-smoking	GBD meta-analysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for environmental tobacco smoking	GBD meta-analysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks

Relative risk for GBD meta-analysis body mass index	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for GBD meta-analysis diabetes mellitus type 2	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for Meta-analysis physical activity		Bull FC, Armstrong TP, Dixon T, Ham S, Neiman A, Pratt M. Comparative quantification of health risks. Chapter 10: physical inactivity. Geneva: World Health Organisation; 2004. (Tables 10.19 and 10.20)
Relative risk for GBD meta-analysis alcohol intake	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks

Validation plots for breast cancer incidence, case fatality, and prevalence
Figure A-11 - Validation plot for modelled breast cancer incidence (age-sex-dimd standardised)

0.00\%

1	1		1
2010	2020	2030	2040
		Year	

Type - Modelled - Observed

Figure A-12 - Validation plot for modelled breast cancer case fatality (age-sex-dimd standardised)

0\%

Type - Modelled \rightarrow Observed

Figure A-13 - Validation plot for modelled breast cancer prevalence (age-sex-dimd standardised)

Type - Modelled - Observed

Colorectal cancer

Table A-7 - Modelling assumptions for incident colorectal cancer

Component	Assumptions / Details
Disease type	Recovery after 10 years; no recurrence
Risk factor associations	Smoking, body mass index, physical activity, alcohol intake
Disease dependencies	Diabetes mellitus type 2
Calibration factor	None

Figure A-14-Causal structure of risk factor associations and disease dependencies for incident colorectal cancer

Table A-8 - Data sources for causal associations between risk factors and colorectal cancer incidence

Parameter	Details	Comments	Source
Relative risk for pack years	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for exsmoking	GBD metaanalysis	$R \mathrm{R}$ from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for body mass index	GBD metaanalysis	$R \mathrm{R}$ from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for diabetes mellitus type 2	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for physical activity	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for alcohol intake	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks

Validation plots for colorectal cancer incidence, case fatality, and prevalence
Figure A-15 - Validation plot for modelled colorectal cancer incidence (age-sex-dimd standardised)

Type - Modelled - Observed

Figure A-16 - Validation plot for modelled colorectal cancer case fatality (age-sex-dimd standardised)

Type - Modelled - Observed

Figure A-17 - Validation plot for modelled colorectal cancer prevalence (age-sex-dimd standardised)

Type \rightarrow Modelled \rightarrow Observed

Lung cancer
Table A-9 - Modelling assumptions for incident lung cancer

Component	Assumptions / Details
Disease type	Recovery after 10 years; no recurrence
Risk factor associations	Smoking, environmental tobacco smoke, fruit intake
Disease dependencies	Diabetes mellitus type 2
Calibration factor	Intercept: 1.005
	Trend:1.1

Figure A-18-Causal structure of risk factor associations and disease dependencies for incident lung cancer

Table A-10 - Data sources for causal associations between risk factors and lung cancer incidence

Parameter	Details	Comments	Source
Relative risk for pack years	RCT of 208,371 individuals	We used the PLCO2014 model	Tammemägi MC, Church TR, Hocking WG, Silvestri GA, Kvale PA, Riley TL, et al. Evaluation of the lung cancer risks at which to screen ever- and never-smokers: screening rules applied to the PLCO and NLST cohorts. PLoS Med 2014;11:e1001764. (Table S1)
Relative risk for ex-smoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relativerisks
Relative risk for environmental tobacco smoking	Meta-analysis of 18 casecontrol studies	The effect was applied to never regularly smokers.	Kim CH, Lee Y-CA, Hung RJ, McNallan SR, Cote ML, Lim W-Y, et al. Exposure to secondhand tobacco smoke and lung cancer by histological type: A pooled analysis of the International Lung Cancer Consortium (ILCCO). Int. J. Cancer 2014;135:1918-30.

Relative risk for fruit consumption	Dose response meta-analysis	The effect was like that estimated by Wang Y, et al. Fruit and vegetable consumption and risk of lung cancer: A dose-response meta-analysis of prospective cohort studies. Lung Cancer 2015;88:124-30.	Vieira AR, Abar L, Vingeliene S, Chan DSM, Aune D, NavarroRosenblatt D, et al. Fruits, vegetables and lung cancer risk: a systematic review and meta-analysis. Ann Oncol 2016;27:81-96
Relative risk for diabetes mellitus type 2	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relativerisks

Validation plots for lung cancer incidence, case fatality, and prevalence

Figure A-19 - Validation plot for modelled lung cancer incidence (age-sex-dimd standardised)

Type — Modelled - Observed

Figure A-20 - Validation plot for modelled lung cancer case fatality (age-sex-dimd standardised)

0\%

Type - Modelled - Observed

Figure A-21 - Validation plot for modelled lung cancer prevalence (age-sex-dimd standardised)

Type \rightarrow Modelled \rightarrow Observed

Prostate cancer

Table A-11 - Modelling assumptions for incident prostate cancer

Component	Assumptions / Details
Disease type	Recovery after 10 years; no recurrence; men only
Risk factor associations	Smoking
Disease dependencies	None
Calibration factor	Trend: 1.002

Figure A-22-Causal structure of risk factor associations and disease dependencies for incident prostate cancer

Smoking

Prostate
 cancer

Table A-12 - Data sources for causal associations between risk factors and prostate cancer incidence

Parameter	Details	Comments	Source
Relative risk for active smoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for ex-smoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks

Validation plots for prostate cancer incidence, case fatality, and prevalence
Figure A-23 - Validation plot for modelled prostate cancer incidence (age-sex-dimd standardised)

Figure A-24 - Validation plot for modelled prostate cancer case fatality (age-sex-dimd standardised)

Type - Modelled - Observed

Figure A-25 - Validation plot for modelled prostate cancer prevalence (age-sex-dimd standardised)

Type - Modelled - Observed

Other cancers

Table A-13 - Modelling assumptions for incident other cancers

Component	Assumptions / Details
Disease type	Recovery after 10 years; no recurrence; all primary malignancies aside from breast, colorectal, lung and prostate
Risk factor associations	None
Disease dependencies	Breast cancer, colorectal cancer, lung cancer, prostate cancer
Calibration factor	Intercept: 0.98
	Trend: 0.999

Figure A-26-Causal structure of risk factor associations and disease dependencies for incident other cancer

Prostate

cancer

Validation plots for other cancer incidence, case fatality, and prevalence

Figure A-27 - Validation plot for modelled other cancer incidence (age-sex-dimd standardised)

0.25\% \qquad

$$
0.00 \% \frac{1}{} \begin{array}{llll}
\frac{1}{20} & 1 & 1 \\
\hline 2010 & 2020 & 2030 & 2040
\end{array}
$$

Type — Modelled - Observed

Figure A-28 - Validation plot for modelled other cancer case fatality (age-sex-dimd standardised)

Type - Modelled - Observed

Figure A-29 - Validation plot for modelled other cancer prevalence (age-sex-dimd standardised)
6\%
$4 \% \longrightarrow$

2\%
0\%

Type \rightarrow Modelled - Observed

Chronic obstructive pulmonary disease (COPD)
Table A-14 - Modelling assumptions for incident COPD

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	Smoking, environmental tobacco smoke
Disease dependencies	None
Calibration factor	None

Figure A-30-Causal structure of risk factor associations and disease dependencies for incident COPD

Smoking

Table A-15 - Data sources for causal associations between risk factors and COPD incidence

Parameter	Details	Comments	Source
Relative risk for pack years	Very detailed random effect meta- analysis	Smoking duration was not significant but intensity and pack years were. We used pack years because they indirectly capture age effect. Most studies for pack years were about incidence rather than mortality. There was no differentiation between current and exsmokers. This may dilute the effect	Forey BA, Thornton AJ, Lee PN. Systematic review with meta-analysis of the epidemiological evidence relating smoking to COPD, chronic bronchitis and emphysema. BMC Pulmonary Medicine. 2011 Jun 14;11(1):36.
Relative risk for ex-smoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for environmental tobacco smoking	Random effect metaanalysis of 24 studies	The effect was applied to never regularly smokers.	Fischer F, Kraemer A. Meta-analysis of the association between second-hand smoke exposure and ischaemic heart diseases, COPD and stroke. BMC Public Health. 2015 Dec; 15(1):1202.

Validation plots for COPD incidence, case fatality, and prevalence
Figure A-31 - Validation plot for modelled COPD incidence (age-sex-dimd standardised)

$$
0.2 \% \square
$$

Type - Modelled - Observed

Figure A-32 - Validation plot for modelled COPD case fatality (age-sex-dimd standardised)

Figure A-33 - Validation plot for modelled COPD prevalence (age-sex-dimd standardised)

Atrial fibrillation
Table A-16 - Modelling assumptions for incident atrial fibrillation

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	Smoking, alcohol intake, systolic blood pressure, body mass index
Disease dependencies	Coronary heart disease
Calibration factor	Trend: 1.002

Figure A-34-Causal structure of risk factor associations and disease dependencies for incident atrial fibrillation

SBP

Table A-17 - Data sources for causal associations between risk factors and atrial fibrillation incidence

Parameter	Details	Comments	Source
Relative risk for active smoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for exsmoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for systolic blood pressure	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for body mass index	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for alcohol intake	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks

Validation plots for atrial fibrillation incidence, case fatality, and prevalence
Figure A-35-Validation plot for modelled atrial fibrillation incidence (age-sex-dimd
standardised)

Type - Modelled - Observed

Figure A-36 - Validation plot for modelled atrial fibrillation case fatality (age-sex-dimd standardised)

0.0\%

Type - Modelled — Observed

Figure A-37 - Validation plot for modelled atrial fibrillation prevalence (age-sex-dimd standardised)

0\%

Type - Modelled - Observed

Heart Failure

Table A-18-Modelling assumptions for incident heart failure

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	None
Disease dependencies	Diabetes mellitus type 2, CHD, COPD, hypertension
Calibration factor	Trend: 1.01

Figure A-38-Causal structure of risk factor associations and disease dependencies for incident heart failure

Hypertension

Validation plots for heart failure incidence, case fatality, and prevalence

Figure A-39 - Validation plot for modelled heart failure incidence (age-sex-dimd standardised)

Type — Modelled - Observed

Figure A-40 - Validation plot for modelled heart failure case fatality (age-sex-dimd standardised)

Type \rightarrow Modelled - Observed

Figure A-41-Validation plot for modelled heart failure prevalence (age-sex-dimd standardised)

0%

Type - Modelled - Observed

Type 2 diabetes mellitus
Table A-19 - Modelling assumptions for incident type 2 diabetes mellitus

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	Smoking, environmental tobacco smoke, alcohol intake, body mass index, fruit intake, metabolic equivalent task, statins prescription
Disease dependencies	None
Calibration factor	Intercept: 1.05

Figure A-42-Causal structure of risk factor associations and disease dependencies for incident type 2 diabetes mellitus

Table A-20 - Data sources for causal associations between risk factors and type 2 diabetes mellitus incidence

Parameter	Details	Comments	Source
Relative risk for active smoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for exsmoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for environmental tobacco smoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for body mass index	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for alcohol intake	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks

Relative risk for fruit consumption	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for Metabolic Equivalent of Task (MET)	GBD metaanalysis	RR from the GBD 2019 study. Metabolic Equivalent of Task (MET) minutes per week	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for statins prescription	Randomeffect metaanalysis	Assuming $R R$ is approximately equal to Odds Ratio	Westendorp RG, Shepherd J, Davis BR, Pressel SL, Marchioli R, Marfisi RM, et al. Statins and risk of incident diabetes: a collaborative metaanalysis of randomised statin trials. Lancet. 2010 Feb 27;375(9716):73542

Validation plots for type 2 diabetes mellitus incidence, case fatality, and prevalence
Figure A-43 - Validation plot for modelled type 2 diabetes mellitus incidence (age-sex-dimd standardised)

Type - Modelled - Observed

Figure A-44 - Validation plot for modelled type 2 diabetes mellitus case fatality (age-sex-dimd standardised)

0.00\%

Type - Modelled - Observed

Figure A-45 - Validation plot for modelled type 2 diabetes mellitus prevalence (age-sex-dimd standardised)

Type — Modelled — Observed

Chronic kidney disease (CKD)

Table A-21-Modelling assumptions for incident chronic kidney disease

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	Body mass index, systolic blood pressure
Disease dependencies	None
Calibration factor	Trend: 1.002

Figure A-46-Causal structure of risk factor associations and disease dependencies for incident chronic kidney disease

BMI

CKD

SBP

Table A-22 - Data sources for causal associations between risk factors and chronic kidney disease incidence

Parameter	Details	Comments	Source
Relative risk for body mass index	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for systolic blood pressure	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks

Validation plots for chronic kidney disease incidence and prevalence
Figure A-47 - Validation plot for modelled chronic kidney disease incidence (age-sex-dimd standardised)

Figure A-48 - Validation plot for modelled chronic kidney disease prevalence (age-sex-dimd standardised)

Dementia

Table A-23 - Modelling assumptions for incident dementia

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	Smoking, body mass index
Disease dependencies	Diabetes mellitus type 2
Calibration factor	None

Figure A-49-Causal structure of risk factor associations and disease dependencies for incident dementia

Table A-24 - Data sources for causal associations between risk factors and dementia incidence

Parameter	Details	Comments	Source
Relative risk for active smoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for exsmoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for body mass index	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for diabetes mellitus type 2	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks

Validation plots for dementia incidence, case fatality, and prevalence
Figure A-50 - Validation plot for modelled dementia incidence (age-sex-dimd standardised)

\qquad
0.0\%

Type - Modelled - Observed

Figure A-51 - Validation plot for modelled dementia case fatality (age-sex-dimd standardised)

3\%

0\%

Type - Modelled - Observed

Figure A-52 - Validation plot for modelled dementia prevalence (age-sex-dimd standardised)

Type - Modelled - Observed

Hypertension
Table A-25 - Modelling assumptions for incident hypertension

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	Systolic blood pressure
Disease dependencies	None
Calibration factor	None

Figure A-53-Causal structure of risk factor associations and disease dependencies for incident hypertension

SBP

Hypertension

Table A-26 - Data sources for causal associations between risk factors and hypertension incidence

Parameter	Details	Comments
Relative risk for systolic	Own calculation of	Directly estimated from Health Survey for
blood pressure	RRs from HSE data	England 2003-2014

Validation plots for hypertension incidence and prevalence
Figure A-54 - Validation plot for modelled hypertension incidence (age-sex-dimd standardised)

Figure A-55 - Validation plot for modelled hypertension prevalence (age-sex-dimd standardised)

$$
30 \% \text { 20\% }
$$

Asthma
Table A-27 - Modelling assumptions for incident asthma

Component	Assumptions / Details
Disease type	Spell - duration is stochastic; can recur
Risk factor associations	Smoking, body mass index
Disease dependencies	Past asthma
Calibration factor	Trend: 1.01

Figure A-56-Causal structure of risk factor associations and disease dependencies for incident asthma

Asthma

Smoking

Table A-28 - Data sources for causal associations between risk factors and asthma incidence

Parameter	Details	Comments	Source
Relative risk for active smoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for ex-smoking	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks
Relative risk for body mass index	GBD metaanalysis	RR from the GBD 2019 study	Global Burden of Disease Study 2019 (GBD 2019) Data Resources \| GHDx [Internet]. [cited 2022 Mar 16];Available from: http://ghdx.healthdata.org/record/ihme-data/gbd-2019-relative-risks

Validation plots for asthma incidence and prevalence
Figure A-57-Validation plot for modelled asthma incidence (age-sex-dimd standardised)

Figure A-58 - Validation plot for modelled asthma prevalence (age-sexdimd standardised)

Alcohol problems
Table A-29 - Modelling assumptions for incident alcohol problems

Component	Assumptions / Details
Disease type	Spell - duration is stochastic; can recur
Risk factor associations	None
Disease dependencies	Past alcohol problems
Calibration factor	None

Alcohol problems

Validation plots for alcohol problems incidence and prevalence
Figure A-60 - Validation plot for modelled alcohol problems incidence (age-sex-dimd standardised)

Figure A-61 - Validation plot for modelled alcohol problems prevalence (age-sex-dimd standardised)
\qquad
0.0\%

Type - Modelled - Observed

Anxiety and depression
Table A-30 - Modelling assumptions for incident anxiety and depression

Component	Assumptions / Details
Disease type	Spell - duration is stochastic; can recur
Risk factor associations	None
Disease dependencies	Past anxiety and depression, lung cancer, prostate cancer, other cancers, stroke, pain
Calibration factor	Intercept: 1.2
	We did not calibrate to the observed incidence rate trends because their projections led to implausible rates.

Figure A-62 - Causal structure of risk factor associations and disease dependencies for incident anxiety and depression

Stroke

Validation plots for anxiety and depression incidence and prevalence
Figure A-63 - Validation plot for modelled anxiety and depression incidence (age-sex-dimd standardised)

1%

0\%

Type - Modelled - Observed

Figure A-64 - Validation plot for modelled anxiety and depression prevalence (age-sex-dimd standardised)

Constipation
Table A-31 - Modelling assumptions for incident constipation

Component	Assumptions / Details
Disease type	Spell - duration is stochastic; can recur
Risk factor associations	None
Disease dependencies	Past constipation, anxiety and depression, breast cancer, colorectal cancer, lung cancer, prostate cancer, other cancers, stroke, pain, alcohol problems, IBS, epilepsy, dementia, type 1 diabetes mellitus, type 2 diabetes mellitus, hypertension, psychosis, heart failure, CHD, COPD, atrial fibrillation, asthma, hearing loss
Calibration factor	None.
	We did not calibrate to the observed incidence rate trends because their projections led to implausible rates.

Figure A-65-Causal structure of risk factor associations and disease dependencies for incident constipation

Validation plots for constipation incidence and prevalence
Figure A-66 - Validation plot for modelled constipation incidence (age-sexdimd standardised)

0.3%
.0\%

Type — Modelled - Observed

Figure A-67 - Validation plot for modelled constipation prevalence (age-sex-dimd standardised)

Pain
Table A-32 - Modelling assumptions for incident pain

Component	Assumptions / Details
Disease type	Spell - duration is stochastic; can recur
Risk factor associations	None
Disease dependencies	Past pain, connective tissue disorders, rheumatoid arthritis, breast cancer, colorectal cancer, prostate cancer, other cancers, CKD, hypertension, lung cancer
Calibration factor	Intercept: 0.9
Other details	Due to data quality issues over time with the prescription data, we modelled the incidence of pain based on the incidence in 2013

Figure A-68-Causal structure of risk factor associations and disease dependencies for incident pain

CKD

Validation plots for pain incidence and prevalence
Figure A-69 - Validation plot for modelled pain incidence (age-sex-dimd standardised)

0\%

Type - Modelled - observed

Figure A-70 - Validation plot for modelled pain prevalence (age-sex-dimd standardised)

Psychosis

Table A-33-Modelling assumptions for incident psychosiss

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	None
Disease dependencies	Alcohol problems, anxiety and depression
Calibration factor	Intercept $=0.92$

Figure A-71-Causal structure of risk factor associations and disease dependencies for incident psychosis

Alcohol problems \qquad problems … .

Psychosis

Anxiety \&

Depression

Validation plots for psychosis incidence and prevalence
Figure A-72 - Validation plot for modelled psychosis incidence (age-sexdimd standardised)

Type - Modelled - Observed

Figure A-73 - Validation plot for modelled psychosis prevalence (age-sexdimd standardised)

Epilepsy

Table A-34 - Modelling assumptions for incident epilepsy

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	None
Disease dependencies	Stroke
Calibration factor	None

Figure A-74-Causal structure of risk factor associations and disease dependencies for incident epilepsy

Epilepsy

Stroke

Validation plots for epilepsy incidence, case fatality, and prevalence
Figure A-75 - Validation plot for modelled epilepsy incidence (age-sex-dimd standardised)

目
0.025\%
\qquad
0.000\%

Type - Modelled - Observed

Figure A-76 - Validation plot for modelled epilepsy case fatality (age-sex-dimd standardised)

Type - Modelled - Observed

Figure A-77 - Validation plot for modelled epilepsy prevalence (age-sex-dimd standardised)

Rheumatoid arthritis
Table A-35 - Modelling assumptions for incident rheumatoid arthritis

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	None
Disease dependencies	None
Calibration factor	Intercept: 0.95

Validation plots for rheumatoid arthritis incidence, case fatality, and prevalence
Figure A-78 - Validation plot for modelled rheumatoid arthritis incidence (age-sex-dimd standardised)

Type - Modelled - Observed

Figure A-79 - Validation plot for modelled rheumatoid arthritis case fatality (age-sex-dimd standardised)

Figure A-80 - Validation plot for modelled rheumatoid arthritis prevalence (age-sex-dimd standardised)

0\%

Type - Modelled - observed

Connective tissue disorders
Table A-36 - Modelling assumptions for incident connective tissue disorders

Component	Assumptions / Details
Disease type	Chronic - no recovery; all connective tissue disorders, excluding rheumatoid arthritis
Risk factor associations	None
Disease dependencies	None
Calibration factor	Trend: 0.999

Validation plots for connective tissue disorders incidence, case fatality, and prevalence
Figure A-81 - Validation plot for modelled connective tissue disorders incidence (age-sex-dimd standardised)

Figure A-82 - Validation plot for modelled connective tissue disorders case fatality (age-sex-dimd standardised)

Type - Modelled - Observed

Figure A-83 - Validation plot for modelled connective tissue disorders prevalence (age-sex-dimd standardised)

Type - Modelled - Observed

Type 1 Diabetes Mellitus
Table A-37-Modelling assumptions for incident type 1 diabetes mellitus

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	None
Disease dependencies	None
Calibration factor	None

Validation plots for type 1 diabetes mellitus incidence, case fatality, and prevalence

Figure A-84 - Validation plot for modelled type 1 diabetes mellitus incidence (age-sex-dimd standardised)

Type - Modelled - Observed

Figure A-85 - Validation plot for modelled type 1 diabetes mellitus case fatality (age-sex-dimd standardised)

Figure A-86 - Validation plot for modelled type 1 diabetes mellitus prevalence (age-sex-dimd standardised)

0\%

Type - Modelled - Observed

Hearing loss

Table A-38 - Modelling assumptions for incident hearing loss

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	None
Disease dependencies	None
Calibration factor	Intercept: 0.95

Validation plots for hearing loss incidence and prevalence
Figure A-87-Validation plot for modelled hearing loss incidence (age-sexdimd standardised)
0.8%.

0.2\%
0.0\%

Type \rightarrow Modelled — Observed

Figure A-88 - Validation plot for modelled hearing loss prevalence (age-sex-dimd standardised)

Irritable bowel syndrome (IBS)
Table A-39 - Modelling assumptions for incident IBS

Component	Assumptions / Details
Disease type	Chronic - no recovery
Risk factor associations	None
Disease dependencies	None
Calibration factor	Trend: 0.99

Validation plots for IBS incidence and prevalence
Figure A-89 - Validation plot for modelled IBS incidence (age-sex-dimd standardised)

Type - Modelled - Observed

Figure A-90 - Validation plot for modelled IBS prevalence (age-sex-dimd standardised)

Non-modelled mortality
Table A-40 - Modelling assumptions for mortality for causes other than the case fatalities described above

Component	Assumptions / Details
Outcome type	Mortality from any cause other than the specifically modelled case fatality relationships described above
Risk factor associations	Smoking, systolic blood pressure, alcohol intake, physical activity
Disease dependencies	All 20 CMS conditions
Calibration factor	None

Figure A-91-Causal structure of risk factor associations and disease dependencies for incident non-modelled mortality

Parameter	Details	Comments	Source
Relative risk for smoking status	Meta-analysis of 1.7 million men and women	Multiply adjusted. We used the NonCVD, non-cancer mortality effects.	Stringhini S, Carmeli C, Jokela M, Avendaño M, Muennig P, Guida F, et al. Socioeconomic status and the 25×25 risk factors as determinants of premature mortality: a multicohort study and metaanalysis of 1.7 million men and women. The Lancet 2017;389:1229-37. (Figure 4)
Relative risk for systolic blood pressure	Meta-analysis of 1.7 million men and women	Multiply adjusted. We used the NonCVD, non-cancer mortality effects. We applied the effect to those with SBP > 140 mmHg	Stringhini S, Carmeli C, Jokela M, Avendaño M, Muennig P, Guida F, et al. Socioeconomic status and the 25×25 risk factors as determinants of premature mortality: a multicohort study and metaanalysis of 1.7 million men and women. The Lancet 2017;389:1229-37. (Figure 4)
Relative risk for physical activity	Meta-analysis of 1.7 million men and women	Multiply adjusted. We used the NonCVD, non-cancer mortality effects. We applied the effect only to those with one or less active days per week.	Stringhini S, Carmeli C, Jokela M, Avendaño M, Muennig P, Guida F, et al. Socioeconomic status and the 25×25 risk factors as determinants of premature mortality: a multicohort study and metaanalysis of 1.7 million men and women. The Lancet 2017;389:1229-37. (Figure 4)
Relative risk for alcohol intake	Meta-analysis of 1.7 million men and women	Multiply adjusted. We used the NonCVD, non-cancer mortality effects.	Stringhini S, Carmeli C, Jokela M, Avendaño M, Muennig P, Guida F, et al. Socioeconomic status and the 25×25 risk factors as determinants of premature mortality: a multicohort study and meta-

Figure A-92- Validation plot for non-modelled mortality (age-sex-dimd standardised)

$\frac{\pi}{7}$
$\frac{\pi}{7}$
$\frac{0}{0}$
\sum
\qquad

Cambridge Multimorbidity Score (CMS) Validation
Figure A-93 -Validation plot for prevalence of CMS > 0 (age-sex-dimd standardised)

20\% \qquad

0\%

Type - Modelled - Observed

Figure A-94 - Validation plot for prevalence of CMS >= 2 (age-sex-dimd standardised)

0%

Type \rightarrow Modelled \rightarrow Observed

B)Supplementary materials B: exposure modelling details and validation

Exposure modelling details
Table B-1 - Exposure modelling in IMPACT ${ }_{\text {NCD }}$

Exposure	Statistical Modelling (distribution)	Independent Variables	Comment
Active days per week	Logit ordinal regression	Year, age, sex, QIMD, SHA, ethnicity	
Daily fruit consumption in grams	GAMLSS (Zero Inflated SICHEL)	Year, age, sex, QIMD, SHA, ethnicity	1 portion $=80 \mathrm{~g}$
Daily vegetable consumption in grams	GAMLSS (Delaporte)	Year, age, sex, QIMD, SHA, ethnicity	1 portion $=80 \mathrm{~g}$
Smoking status (never/ ex occasionally/ ex regularly /current)	GAMLSS (Multinomial with four categories)	Year, age, sex, QIMD, SHA, ethnicity	All the smoking-related variables are used in a smoking microsimulation subroutine that simulates smoking histories
Years of abstinence for exsmokers	GAMLSS (double Poisson)	Year, age, sex, QIMD, SHA, ethnicity	Applies only to the first year that a synthetic individual enters the simulation. Then is estimated from the smoking subroutine

Exposure	Statistical Modelling (distribution)	Independent Variables	Comment
Smoking duration for exsmokers	GAMLSS \quad (double Poisson)	Year, age, sex, QIMD, SHA, ethnicity	Applies only to the first year that a synthetic individual enters the simulation. Then is estimated from the smoking subroutine
Smoking duration for current smokers	GAMLSS (negative binomial)	Year, age, sex, QIMD, SHA, ethnicity	Applies only to the first year that a synthetic individual enters the simulation. Then is estimated from the smoking subroutine
Smoking initiation probability	GAMLSS (binomial)	Year, age, sex, QIMD, SHA, ethnicity	
Smoking cessation probability	GAMLSS (binomial)	Year, age, sex, QIMD, SHA, ethnicity	
Smoking relapse probability	Exponential decay	Sex, QIMD, years since cessation	
Cigarettes per day for exsmokers	GAMLSS (negative binomial)	Year, age, sex, QIMD, SHA, ethnicity	
Cigarettes per day for current smokers	GAMLSS (negative binomial)	Year, age, sex, QIMD, SHA, ethnicity	

Exposure	Statistical Modelling (distribution)	Independent Variables	Comment
Environmental tobacco smoking	GAMLSS (binomial)	Year, age, sex, QIMD, SHA, ethnicity	Currently, this is independent of smoking prevalence in an area
Ethanol consumption per day, based on average weekly consumption	GAMLSS (negative binomial)	Year, age, sex, QIMD, SHA, ethnicity, smoking status	Since HSE 2011
BMI	$\begin{aligned} & \text { GAMLSS } \quad \text { (Box-Cox } \\ & \text { Power Exponential) } \end{aligned}$	Year, age, sex, QIMD, SHA, ethnicity, smoking status	
SBP	$\begin{aligned} & \text { GAMLSS } \quad \text { (Box-Cox } \\ & \text { Power Exponential) } \end{aligned}$	Year, age, sex, QIMD, SHA, ethnicity, smoking status	
BP medication	GAMLSS (binomial)	Year, age, sex, QIMD, SHA, ethnicity, SBP	Since 2012
Total cholesterol	GAMLSS (Box-Cox t)	Year, age, sex, QIMD, SHA, ethnicity	
HDL to total cholesterol ratio	GAMLSS (generalized beta type 1)	Year, age, sex, QIMD, SHA, ethnicity	

Exposure	Statistical Modelling (distribution)	Independent Variables	Comment
Statins	GAMLSS (binomial)	Year, age, sex, QIMD, SHA, ethnicity, total cholesterol	Since 2012

Exposure validation plots

The following figures are the cumulative probability validation plots for the modelled exposures in the simulation compared to the observed Health Survey for England data. Plots are presented by 1) year and 10-year age-group, 2) year and quintiles of IMD.

For the main exposures modelled (alcohol, active days, BMI, fruit and vegetable intake, smoking prevalence, second-hand smoke exposure, SBP, total cholesterol), we also present trends in exposures by quintiles of IMD (unstandardised).

Active days
Figure B-1 - Validation: Active days - HSE and projected IMPACT ${ }_{\text {NCD }}$ trends by quintile of IMD (unstandardised)

Figure B-2. Validation: Active days by year and age

- HSE … IMPACTncd

Figure B-3. Validation: Active days by quinitiles of IMD and age

- HSE … IMPACTncd

Alcohol intake
Figure B-4 - Validation: Alcohol intake - HSE and projected IMPACT ${ }_{\text {NCD }}$ trends by quintile of IMD (unstandardised)

Figure B-5 - Validation: Alcohol intake (grams per day) by year and age

- HSE … IMPACTncd

Figure B-6 - Validation: Alcohol intake (grams per day) by quintiles of IMD and age

- HSE … IMPACTncd

Body mass index
Figure B-7 - Validation: BMI - HSE and projected IMPACT ${ }_{\text {NCD }}$ trends by quintile of IMD (unstandardised)

Figure B-8 Validation: Body mass index by year and age

- HSE … IMPACTncd

Figure B-9 - Validation: Body mass index by quintiles of IMD and age

- HSE … IMPACTncd

Systolic blood pressure
Figure B-10 - Validation: Systolic blood pressure - HSE and projected IMPACT ${ }_{\text {NCD }}$ trends by quintile of IMD (unstandardised)

Figure B-11 - Validation: Systolic blood pressure by year and age group

- HSE … IMPACTncd

Figure B-12 - Validation: Systolic blood pressure by quintiles of IMD and age group

Total cholesterol
Figure B-13 - Validation: Total cholesterol - HSE and projected IMPACT ${ }_{N C D}$ trends by quintile of IMD (unstandardised)

Figure B-14 - Validation: total cholesterol by year and age

- HSE … IMPACTncd

Figure B-15 - Validation: total cholesterol by quintiles of IMD and age

- HSE … IMPACTncd

Fruit intake

Figure B-16 - Validation: fruit intake (portions per day) by year and age

- HSE IMPACTncd

Figure B-17 - Validation: fruit intake (portions per day) by quintiles of IMD and age

- HSE … IMPACTncd

Vegetable intake

Figure B-18 - Validation: vegetable intake (portions per day) by year and age

- HSE … IMPACTncd

Figure B-19 - Validation: vegetable intake (portions per day) by quintiles of IMD and age

- HSE … IMPACTncd

Fruit and Vegetable intake combined
Figure B-20 - Validation: Fruit and vegetable intake - HSE and projected IMPACT ${ }_{\text {NCD }}$ trends by quintile of IMD (unstandardised)

Statin prescriptions
Figure B-21 - Validation: statins prescriptions by year and age

- HSE IMPACTncd

Figure B-22 - Validation: statins prescriptions by quintiles of IMD and age

- HSE … IMPACTncd

Number of cigarettes smoked (ex-smokers)
Figure B-23 - Validation: Number of cigarettes smoked by year and age group in ex-smokers

- HSE IMPACTncd

Figure B-24 - Validation: Number of cigarettes smoked by quintiles of IMD and age group in ex-smokers

- HSE … IMPACTncd

Number of cigarettes smoked (current smokers)
Figure B-25-Validation: Number of cigarettes smoked by year and age group in current smokers

- HSE IMPACTncd

Figure B-26 - Validation: Number of cigarettes smoked by quintiles of IMD and age group in current smokers

- HSE … IMPACTncd

Smoking status

Figure B-27 - Validation: Proportion of active smokers - HSE and projected IMPACT ${ }_{\text {NCD }}$ trends by quintile of IMD (unstandardised)

Figure B-28 - Validation: Smoking status by year and age group

- HSE … IMPACTncd

Figure B-29 - Validation: Smoking status by quintiles of IMD and age group

- HSE … IMPACTncd

Years of smoking (ex-smokers)
Figure B-30 - Validation: years of smoking (ex-smokers) by year and age

- HSE … IMPACTncd

Figure B-31 - Validation: years of smoking (ex-smokers) by quintiles of IMD and age

- HSE … IMPACTncd

Years of smoking (current smokers)
Figure B-32 - Validation: years of smoking (current smokers) by year and age

- HSE IMPACTncd

Figure B-33 - Validation: years of smoking (current smokers) by quintiles of IMD and age

- HSE … IMPACTncd

Years since smoking cessation
Figure B-34 - Validation: years since smoking cessation by year and age

- HSE … IMPACTncd

Figure B-35 - Validation: years since smoking cessation by quintiles of IMD and age

- HSE … IMPACTncd

Exposure to environmental smoking
Figure B-36 - Validation: Exposure to environmental smoking - HSE and projected IMPACT NCD trends by quintile of IMD (unstandardised)

Figure B-37 - Validation: Exposure to environmental smoking by year and age group

- HSE … IMPACTncd

Figure B-38 - Validation: Exposure to environmental smoking by quintiles of IMD and age group

- HSE … IMPACTncd

[^0]: ${ }^{1}$ An alternative approach would be to assume additive risks. Under this assumption and using the previous example, the RR of an obese smoker would be $2+3-1=4$. This multiplicative risk assumption is commonly used for epidemiological modelling. [33-36]

[^1]: ${ }^{2}$ The darker the blue, the stronger the association. Prevalent CKD was associated with a reduced risk of pain. This is likely to be because we measured pain using prescription data in CPRD, and many pain medications are contra-indicated for CKD.

[^2]: ${ }^{3}$ We used optimal levels for the exposures that were well below the minimum level of exposure considered harmful.

